National Research Conseil national _
I*I Council Canada de recherches Canada ERB-1088

Institute for Institut de Technologie
Information Technology de I'information

NC-CN2C

ES2: A Tool for Collecting
Object-Oriented Design
Metrics from C++ and Java
Source Code

Stojanovic, M. and El Emam, K.

June 2001

Canada NRC 44888

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

ES2: ATool for Collecting Object-Oriented Design
Metrics from C++ and Java Source Code

Stojanovic, M. and El Emam, K.

June 2001

Copyright 2001 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

ES2: A Tool for Collecting Object-Oriented Design
Metrics from C++ and Java Source Code

Marta Stojanovic Khaled El Emam
National Research Council of Canada
Institute for Information Technology
Building M-50, Montreal Road
Ottawa, Ontario
Canada K1A OR6
{marta.stojanovic, khaled.el-emam}@nrc.ca

Abstract

There is considerable evidence that object-oriented design metrics can be used to make quality
management decisions leading to substantial cost savings. However, one of the major impediments to
the wider adoption of object-oriented metrics in practice has been the unavailability of robust and low-
cost metrics analyzers. Commercial tools tend to collect basic size metrics and many variants of these
size metrics. Other potentially powerful coupling metrics are typically not collected. This report is the
user manual for a publicly available open-source metrics analyzer for the C++ and Java languages. This
analyzer collects a set of design metrics that have been empirically demonstrated to be beneficial for
making quality management decisions in practice.

1 Introduction

Recent evidence indicates that most faults in software applications are found in only a few of a system’s
components [6, 9-11]. The early identification of these components allows an organization to take
mitigating actions, such as focus defect detection activities on high risk components, for example by

optimally allocating testing resources [8], or redesigning components that are likely to cause field failures.

In the realm of object-oriented systems, one approach to identify faulty classes early in development is to
construct prediction models using object-oriented design metrics. Such models are developed using
historical data, and can then be applied for identifying potentially faulty-classes in future applications or
future releases. The usage of design metrics allows the organization to take mitigating actions early and
consequently avoid costly rework. Recent evidence suggests that taking such actions (in this case design

inspections) can result in an estimated 42% saving in post-release costs for a Java application [7].

One of the difficulties in implementing quality management using object-oriented design metrics is that
there have not been too many good tools available. A number of commercial tools collect the CK metrics
suite [1] (for the tools, see [2] and also visit www.object-oriented.org). However, doubt has been raised

about the validity of some of these metrics and about the methodology used in previous studies that

validated these metrics [5]. Therefore, there is a need for tools that implement other metrics that have

been empirically validated in a methodologically sound manner.

This document describes a tool that can be used for collecting interface object-oriented metrics. This
means that the metrics can be calculated from interface specifications, which are usually available at the
design stage of a project. The current version of the tool works with the C++ and Java language. For C++
it can compute the metrics from the ".h" files (which are, in fact, the interface specifications). For Java, the
“.java” files are used, but they can contain only method signatures, and not their actual implementation, in
order to calculate the metrics (which enables us again to calculate metrics in the design phase). The
metrics that are actually collected capture size, coupling, and inheritance. We only collect these metrics
because previous research has indicated that they are good predictors of class fault-proneness [2-4, 7].

The metrics that are collected by the tool are summarized in Table 1.

Before proceeding further, it is important to realize that we are focusing only on metrics that were properly
validated. That is why the tool does not collect all or many metrics that have been defined in the literature.
As evidence accumulates demonstrating the efficacy of other metrics, they will certainly be included

within our tool.

Title

Description

Coupling Metrics

OCAIC (instances)

Class-attribute import coupling (number of coupled attributes) !

OCAIC (classes)

Class-attribute import coupling (number of coupled classes) *

OCAEC (instances)

Class-attribute export coupling (number of coupled attributes) !

OCAEC (classes)

Class-attribute export coupling (number of coupled classes) *

OCMIC (instances)

Class-method import coupling (number of coupled method
parameters and return types)

OCMIC (classes)

Class-method import coupling (number of coupled classes)

OCMEC (instances)

Class-method export coupling (number of coupled method
parameters and return types)

OCMEC (classes)

Class-method export coupling (number of coupled classes)

ACAIC (instances)

Ancestor class-attribute import coupling (number of coupled
attributes) !

ACAIC (classes)

Ancestor class-attribute import coupling (number of coupled
classes) !

DCAEC (instances)

Descendant class-attribute export coupling (number of coupled
attributes) !

DCAEC (classes)

Descendant class-attribute export coupling (number of coupled
classes)

ACMIC (instances)

Ancestor class-method import coupling (number of coupled
method parameters and return types)

ACMIC (classes)

Ancestor class-method import coupling (number of coupled
classes)

DCMEC (instances)

Descendant class-method export coupling (number of coupled
method parameters and return types)

DCMEC (classes)

Descendant class-method export coupling (number of coupled
classes)

Inheritance Metrics

DIT

Depth of inheritance tree

Size Metrics

Number of pub/priv/ prot/all

attributes

Number of attributes (depending on the access option: public,
private, protected, all)

Number of pub/priv/ prot/all

methods

Number of methods (depending on the access option: public,
private, protected, all)

LOC

Lines of code (physical)

Table 1: Metrics collected by the ES2 tool.

1.1 Examples of Calculating the Metrics

Just to illustrate what the metrics mean, in this subsection we describe, using an example, a simple
calculation of all of these metrics for C++ soource code. From Table 1we can see that there are three
types of interactions between 2 classes: their relationship (whether it is a parent-child relationship or
other), type of interaction (whether a class has an attribute, method parameter, or return type of another

class) and locus of impact (whether a class is using another class through its attributes or method types —

! Only defined for the C++ code, see section 4.2.2

import — or it is used by another class - export). Letters in the acronyms stand for these 3 types of

interactions: A for ancestor, D for descendant, O for other (neither ancestor nor descendant), CA for

class-attribute, CM for class-method, IC for import coupling and EC for export coupling.

Figure 1 shows a simple example of C++ code and how every type of coupling is captured.

class A: public class B

For class A: Class-method import coupling (OCMIC) with class C
For class C: Class-method export coupling (OCMEC) with class A

{
public:
Cml(int i);
private
B bi;

}s

For class A: Ancestor class-attribute import coupling (ACAIC) with class B
For class B: Descendant class-attribute export coupling (DCAEC) with
classA

class B: public class D

{

For class A: Ancestor class-attribute import coupling (ACAIC) with class D
For class D: Descendant class-attribute export coupling (DCAEC) with
classA

For class B: Ancestor class-method import coupling (ACMIC) with class D
For class D: Descendant class-method export coupling (DCMEC) with
class A

For class B: Class-attribute import coupling (OCAIC) with class C (2
instances)

For class C: Class-attribute export coupling (OCAEC) with class B (2
instances)

public: :
int nb1(D &d):
private:
Ccl, cz;
}
class C
{
public:
int nci(void);
private:
int k;
A al, az2;
b :
class D
{
public:
void mdl(int);
}s

For class C: Class-attribute import coupling (OCAIC) with class A (2
instances)

For class A: Class-attribute export coupling (OCAEC) with class C (2
instances)

Figure I A simple C++ example for calculating metrics. This type of class definition code is

typically in the interface ".h" files.

If we consider all the access types (public and private, in this case), we can see that class B, for example,
has two attributes which are both of type C. If we count coupling instances, then it means that
OCAIC(B)=2. Class B has one method whose argument type is of type D. As class D is a parent class of
class B, we are talking about ancestor coupling, i.e., ACMIC(B) = 1. Class B has only one parent, class D,
so its DIT is 1 (the DIT of class A is 2, because it is a subclass of class B, which is a subclass of class D).
Similarly we can calculate all the metrics for all the classes. At the end, we would obtain the results

presented in Table 2

Metric Class A Class B Class C Class D+ 5Class A Class B Class C Class D
OCAIC (instances) 0 2 2 0 3 0 0 0 0
OCAIC (classes) 0 1 1 0 % 0 0 0 0
OCAEC (instances) 2 0 2 0 3 0 0 0 0
OCAEC (classes) 1 0 1 0 < 0 0 0 0
OCMIC (instances) 1 0 0 0 2 1 0 0 0
OCMIC (classes) 1 0 0 0 2 1 0 0 0
OCMEC (instances) 0 0 1 0 0 0 1 0
OCMEC (classes) 0 0 1 0 ¢ 0 0 1 0
ACAIC (instances) 2 0 0 0 20 0 0 0
ACAIC (classes) 2 0 0 0 ¢ 0 0 0 0
DCAEC (instances) 0 1 0 1 20 0 0 0
DCAEC (classes) 0 1 0 1 e 0 0 0 0
ACMIC (instances) 0 1 0 0 2 0 1 0 0
ACMIC (classes) 0 1 0 0 50 1 0 0
DCMEC (instances) 0 0 0 1 5 0 0 0 0
DCMEC (classes) 0 0 0 1 5 0 0 0 0
Number of attributes 2 2 3 0 5 0 0 0 0
Number of methods 1 1 1 1 5 1 1 1 1
DIT 2 1 0 0 g 2 1 0 0
LOC 11 10 11 735 11 10 11 7
all attributes and methods only public attributes and methods

Table 2: Metrics as calculated for the sample code from Figure 1.

Note that the second part of the table shows metrics if only public attributes and methods are taken into
account. We can see that there is less coupling, because all the attributes in the sample code in Figure 1

are private, so the coupling is related only to methods (which are all public in this case).

1.2 The ES2 Environment

The ES2 metrics analyzer has been implemented on top of the Source Navigator (SN) IDE. SN is a very
powerful IDE by itself, especially for the purpose of going through large amounts of code trying to find

cross-references and links amongst classes.

We will take a few moments here to explain the choice of using SN, and its advantages and
disadvantages. SN is a product made available by RedHat under the GNU General Public License. You
can download and install it right away from <http://sources.redhat.com/sourcenav/>. It has been around
for a number of years and therefore it is stable and has a relatively large user community. SN extracts
quite a number of relevant elements from the source code and stores them in databases, which we then
use to compute the metrics. This is ideal since, in principle, for any object-oriented language, the same
analyzer can compute the metrics from the database. Furthermore, eventually the ES2 system and its
successors will be integrated directly into SN so that metrics will be available as a user navigates through

the code.

If you wish to use SN by itself (i.e., you are not interested in the ES2
system), you can download SN directly from the address above. However,
if you wish to use ES2, you must use the version of SN bundled in the ES2
distribution as we have made some changes to SN (see section 2 for

downloading instructions). ES2 is based on SN version 4.52.

Currently, there is an SN verison 5.0 (just released a few weeks ago!). We
have not completed evaluation of SN 5.0 with ES2. Therefore, we reiterate

that you must use the SN system that is bundled with ES2.

2 Downloading and Installing ES2

2

The current version of the ES2 tool works only on Linux RedHat 7.0 and 7.1 °. We do not make any

claims about its suitability or applicability under any other conditions.

2 please check the ES2 Web site for porting to other platforms. There is a continuous effort to port ES2 to other platforms.

To download and install ES2 follow these steps:

1. Download

the

file SN452_ES2_linux.tar.gz from the following

<http://www.seg.iit.nrc.ca/~elemam> under the "Tools - Metrics" tab.

2. Save it in the directory where you want it installed.

3. Unpack the downloaded file. Type in the console window in the same directory:

This will create the directory SN452_ES2_linux_unpacked and all the subdirectories (Figure 2).

tar xvfz SN452_ES2 |inux.tar.gz

File Edit Settings Help

[marta:™]$ tar xufz SN452_ES2_linux,tar.qz

SM452_ES2_1inux_unpackeds

SM452_ES2_1inux_unpacked/shares

SM452_ES2_1inux_unpacked/sharessdks
SM4R2_ES2_1inux_unpacked/sharessdk/1ibs
SM452_ES2_linux_unpacked/shareszdk/lib/libutilz,a
SN452_ES2_1inux_unpacked/sharessdks/1ib/libdbutil=, a
SHA52_ES2_linux_unpacked/sharessdk/lib/libpafdb, a
SN452_ESZ2_1inux_unpacked/sharessdks/1ib/libtcl8,1,a
SM452_ES2_1inux_unpacked/zsharessdk/1ib/libsnptonls,a
SHN452_ESZ_linux_unpacked/sharessdks/apis
SM452_ESZ2_1inux_unpackedssharessdk/apisc
SN452_ESZ2_linux_unpacked/sharessdk/apisc/databases
SH452_ES2_1inux_unpacked/sharessdk/apisc/databazes/exanpless
SH452_ESZ2_linux_unpackedssharessdk/apisc/databaze/examplesMakefile
SH452_ES2_1inux_unpacked/sharessdk/api/c/database/exanples/dbgry.c
SH452_ES2_linux_unpackeds/sharessdk/apistcls
SM452_ES2_1inux_unpacked/sharessdk/apistecl /databazes
SH452_ES2_linux_unpacked/sharessdk/apistcl/databazesexanplesy
SM452_ESZ2_1inux_unpacked/sharessdk/apistcl/databazes/exanples/cal l-freq, tk
SH452_ES2_linux_unpacked/sharessdk/apistcl/databazesexanplessclobber,tel
SN45Z2_ESZ2_1inux_unpacked/sharessdksapistel/databazes/exanplessconstants, tel
SM452_ES2_linux_unpackeds/shareszdk/api/tcl /databasesexanples/diamonds, tcl
SHN452_ESZ2_1inux_unpackeds/sharessdks/apistel/databazesexanples/multicludes, tcl

location:

Figure 2: The tar command to show the directories that are created when you unpack the ES2 file.

4. Change directory to SN452_ES2 by typing: | c¢d SN452_ES2_|i nux_unpacked

5. Run INSTALL by typing: | -/ I NSTALL | (see Figure 3).

SAhomesmartaSNARE ESZ finux_unpacke

| File Edit Seftings Help
[marta:™1% cd SM452_ES2_linux_unpacked/
[marta:™/SM452_ES2?_linux_unpacked]$,/INSTALL Al

~L

Figure 3: Running the installation command.

6. The tool installation starts. It asks the user to accept the licence (Figure 4), and after that it prompts
the user to accept or change the offered installation directory (Figure 5). Make sure you have write

permission for that directory.

, Don’t choose for installation the directory

SN452_ES2_unpacked.
&=

EVTEL
{C) Copyright 1957 -2000 Fed Hal, inc.
£l rights reserved.

Tel: «1 M 542 9600 Fax:+1 408 542 9699
Emall: sugport Scygnus.com i Hsuppor. cygnaes .comd

ES2: A Cos and Java Dasign Melrcs fnadyzer
(C} Copyright 2001 Halional Research Council
All mghts reserver.

Contact information ; Technical support

Fhided El- Emam Marta Stojivic

Tel: +1 13 938 4260 Tel: +1 613 993 3857

Eimail: kladed Bl - BNEm S nr.oa Email: mara. slojanovic Gnre.ca

Al GHNU GEMERAL FUBLIC LICENSE
| [Warsion 2, Jung 1551

| Copyright {C} 1985 1997 Free Softwahe Fowndabon, Inc

|59 Tomple Place, Suite 350, Boslon, MA 021111307 USA Everyong 14
ipermitad o copy and dsiibule verbaiim coples of Bis icense document,
bt changing it is not sllowed

Freamile

| Th ficensas for most soMesirg are designad 10 ke sway your Tregdom
\to share and changa it By contrast, the G General Pulilic License s
\Intended to guaraniee your freadom to share and change free

|s0Mware- ~to make Sure (he software is free for all is users This General

Accepl License Decling

Figure 4: The opening screen when installing ES2.

AFSource-Navigator 4.5.2 with ES2: A C++ and Java Design Metr

Enter Installation Target Directory:

‘homesmarta/shg52_ESZ

o |

Figure 5: The window where you will need to provide the installation directory.

7. The installation then continues and asks for the mail tool to use to send bugs. If you are not certain

what to put leave it as is; the default is mailhost (screenshot not shown).

8. The installation then prompts for the type of demo projects to install (see Figure 6). These are demo
projects for Source Navigator, and it is up to you to make a choice. They are not essential for the ES2

tool.

Select demonstration projects to install:

_| CfCe++ Project
Java Project
Fortran Project
Cobol Project
Assembly Project
Monop game

G b L

0K |

Figure 6: The window where you can select demo projects for SN.

9. The installation proceeds and shows a message to add the installation directory to the environment
variable PATH when finished (Figure 7). If you want to have easy access to the tool from any
directory, it is useful to set PATH. If you want PATH to take effect only localy to the current terminal
window you should set it in the command line (Figure 8). If you want it to take effect in every newly
created terminal, you should create or modify the startup file of your shell to add ES2 to your PATH.
In order to do this, you should edit the . bashrc file® found in your home directory (using the Emacs as

editor, for instance) by adding the line which sets PATH (see Figure 9).

complete.

Flease include home/martafSH452 ESZ/min
in your PATH environment variahle.

To start Source- Havigator, type:
Mhome/marta/SH452_ES2/binfsnavigator

To use ESZ C++ and Java design metrics analyzer please refer to the
documentation in :
fhomefmartalSH452 ESZishare/ES2

Exit |

Figure 7: The screen informing the user to modify the PATH environment variable.

® The startup file maybe different if you are not using the bash shell.

10

[marta:™/SH452_ES2_linux_unpacked]$ cd ..
[marta:™]$ cd SN452_ES2
[marta:”/SH452_ES21% cd bin

‘ [marta:”/SH452_ES2/binls 1=

[marta:™/SM452_ES2/binl$ export PATH
[marta:™SM452_ES2/binl$ shawigator &
[1] 20754

[narta:™/SNa52_ES52/binls 1l

Setting PATH i [marta:"/SNA5Z_ES2/bin]$ PATH=$PATH:/ home/martasSNAG2_ES2/bin K
Launching SN

o
/

Figure 8: Setting the PATH environment variable on the command line.

Buffers Files Tools Edit Search Hule Insert Help

.bashrc
User specific aliases and functions

Source global definitions

if [-f Jetci/bashre 1; then
Jfetc/sbashre

fi

PATH=%FATH: Fhome/martas5H452_ES2/bin

—— 1k hrc (Shell-script)--L11--Top

Figure 9: Setting PATH in .bashrc file.

10. Now both Source Navigator 4.52 and ES2 are installed and ready to use. Directory SN452_ES2/ bi n
contains, among others, snavi gat or (the script for running Source-Navigator) and ES2 (the script for
running the design metrics analyzer). Figure 8 illustrates how SN is started using the snavi gat or

script.

11. N.B. You can remove the directory SN452_ES2_| i nux_unpacked by typing:

rm-rf SN452_ES2_| i nux_unpacked

11

in its parent directory. It is advised to keep the downloaded file GN452_ES2_|i nux.tar.gz) for

eventual future installations.

3 Example of Using ES2

ES2 is a Tcl script (see [12, 15]) that extracts information from database files produced by Source
Navigator, calculates design metrics and outputs them in a file easily imported by MS Excel or Sun’s
StarCalc. It is therefore necessary to first create a Source Navigator project from the source C++ or Java
files to be analyzed, and then to run ES2. Note that for C++ only the . h files are required, so it does not

matter if the . cpp files are not available. Here we explain in details how to use both tools.

Sour ce Navi gat or ES2

' Metrics file (can be imported
Source code I P SN database I P into MS Exc(el) P

3.1 Example Systems

The ES2 distribution comes with example systems that can be used to get used to how ES2 works. They

can be found in the SN452_ES2/ shar e/ ES2/ exanpl es directory.

C++ examples The subdirectory SN452_ES2/ shar e/ ES2/ exanpl es/ CPP contains two C++ example
systems. One is a smaller database library called MetaKit (for more information visit
<http://equi4.com/metakit/>). It can be found in the subdirectory Smal | Exanpl e. The other one is a more
substantial system, a GUI framework called V (<http://objectcentral.com/vgui/vrefman/install.htm>). It can
be found in the subdirectory Bi gExanpl e. For both examples we extracted only *. h files from the source

code since header files are sufficient for our tool (although it also works well with . cpp files) .

Java examples The subdirectory SNA52_ES2/ shar e/ ES2/ exanpl es/ Java contains three Java examples:
graph, JPublish and J/Top. The Graph class library is a package of Java classes designed to facilitate
plotting data using Java applets. It can be downloaded from
<http://www.sci.usq.edu.au/staff/leighb/graph/>. Both JPublish and J/Top are created by Anthony Eden
and can be downloaded from his Web site: <http://www.anthonyeden.com/>. JPublish is a web

application framework which combines the Velocity template engine from the Apache Group with a

content repository and application control framework. J/Top is a Java application that presents data

output from 'top' applications on Linux/UNIX machines.

In the next section we show how to use ES2 on the V C++ example. Note that the usage is the same for

Java source code.

3.2 Using Source Navigator

As noted earlier, SN is an open-source code navigation tool in which we incorporated our C++ and Java

design metrics analyzer. It is invoked from the command line by typing:

$home_di rect ory/ SNA52_ES2/ bi n/ snavi gat or

where $hore_directory should be replaced with the real home directory of SN452_ES2. If the

environment variable PATH is set, it can be invoked just by typing snavi gat or at the prompt.

Here we will explain how to make a Source Navigator project from the sample code included with the ES2

tool. We start with a number of . h files from the application called V.

1. Upon invoking Source Navigator for the first time it offers the user to create a new project or to find

existing ones (Figure 10).

Mews Project... |
Browse. . |
Cancel |

Figure 10: The SN startup screen when there are no projects defined.

2. When the user clicks on the New Project button, a window pops up asking for a project name and
source files destination. It offers a default project name and directory (Figure 11), but we will change
it. We will call this project v. proj, put it in the /hone/ marta directory and use an example from

/ SNA52_ES2/ shar e/ ES2/ exanpl es/ CPP/ Bi gExanpl e/ v directory (Figure 12).

13

e Do you want to automatically create a Source-Mavigator Project hased on:

Project File ;f’hnmefmartafSN452_E52;'bim’bin.proj |
Add Directory | /home /mar ta/SNAS2_ES2/hin |

more |

¥ Include Subdirectaries B Build Cross-Reference database

(8].4

Project Editar Cancel

Figure 11: The window where the specific details of a project are provided.

e Do you want to automatically create a Source-Navigator Project based on:

Project File | /home /marta/v. proj

Add Directary -f.l-mme,ffnarta.fSI\-I45.2_]::ZS2!éhare/ES?féxamlﬁ"leSfC-PP)BIJ:.“gExamﬁ-ief\;'

more |

M Include Subdirectories B Build Cross-Reference database

ok | Project Editar Cancel

Figure 12: Window when the default project specifics are edited.

Actual directories that should be added to the project for all the included examples
are:
For Java:
SN452_ES2/share/ES2/examples/Java/graph or
SN452_ES2/share/ES2/examples/Java/JPublish or
SN452_ES2/share/ES2/examples/Java/JTop.
For C++:
SN452_ ES2/share/ES2/examples/CPP/SmallExample/metakit-2.3.4-29 or
SN452_ES2/share/ES2/examples/CPP/BigExample/v

Use these exact directories (and not their subdirectories) in order to preserve the

original source directory structure.

14

3. After clicking on OK, Source Navigator starts parsing the project files and at the end pops up a

window with the information on all files (Figure 13).

Eile Miew Tools History ¥indows Help

| |~ 28 B) @ o

Pattern: ¥ Search |

File | Directory | Type

[§] abtwdlg.h .. /BigExample/v/vide oo+

_ﬁ aw3d. h coamplesvSincludessy oes

_ﬁ awddp. h coamplesvSincludessy oes

_ﬁ awremd3d. h coamplesvSincludessy oes

_ﬁ awend3dp. b coamplesvSincludessy oes

_ﬁ awlhl3d. h coamplesvSincludessy oes i

_ﬁ awlhladp. h coamplesvSincludessy oes

_ﬁ awscl3id h coamplesvSincludessy oes

_ﬁ awscladp. h coamplesvSincludessy oes

_ﬁ awrsindd. h coamplesvSincludessy oes

_ﬁ awsinddp. h coamplesvSincludessy oes

_ﬁ awsld3d. h coamplesvSincludessy oes

_ﬁ awsld3dp. h coamplesvSincludessy oes

_ﬁ awtogdd. h coamplesvSincludessy oes

_ﬁ awtogddp. b coamplesvSincludessy oes

_ﬁ hncapp. b e/ /vopengl/bounce o+

_ﬁ brcemds. b ccefvfvopengl/hounce o+s

_ﬁ brcenw. b ccefvfvopengl/hounce o+s

_ﬁ hrshdlg. b . igExample/w/iconed c++

_ﬁ canvas. h coamplesvSincludessy oes

_ﬁ canvasp. h coamplesvSincludessv oes

_ﬁ cnevmdly. b . /BigExample/w/vide o+s

_ﬁ zoldlg. b . igExample/w/iconed c++

_ﬁ cprojdlyg. h .. /BigExample/v/wide c++

_ﬁ cubeapp. h . lefv/vopengl/oube o+

_ﬁ cuhecmdy. h clesw/vopenglSoube oes

_ﬁ cubecnv. h clesw/vopenglSoube o

_ﬁ drawapp. h .. igExample /v /drawex o++

_ﬁ drasremdr. h cigExample fefdrawen o+s

_ﬁ dramenv. h cigExample fefdrawen oes

[4] 6Lk . mwin32/include/gl o+

[§] clut.h mwin32/include/gl o+

A gdbdlg.h .. /BigEzmample/fv/vide oo+ /

= I]
|

Figure 13: The SN window with all the files in the project.

4. Now we have created a SN project. By doing so SN has created a number of database files that we
use for the purpose of calculating design metrics. Here we can close Source Navigator windows. Of
course, it is an excellent code navigation tool and we encourage the user to use it as such. For more

information on how to use Source Navigator, see: <http://sources.redhat.com/sourcenav/online-

docs/userguide/index_ug.html>.

5. By parsing the source files, SN created the database files that are put by default in

$project_home_directory/.snprj directory (Figure 14).

15

File Edit Setings Help

[marta:”/SH452_ES2/bin]$ cd ™

[marta:™]$ lz w.proj

YLproj

[marta:"1F ls ,snprjluv.#®

LEnpridv,l LN, B Lanpridv e Lenpride,iu LEnpridue.t
Lanpride.by LEnpridv,ec LEnprjde.fu enprjde,iv snpridu.to
aEhpridv,.cl Lsnpridiv,f LERPEJSVLOY LEnprid L ma

LEnprjdv,con Lenprjdve,fd o canprjde,icl snprjde.nd

anprjdv,etr Lenprjdv, Fil o csnpridv.in snprjde.ni

[marta:“1$ i

~L

Figure 14: A listing of the database files that are generated by SN.

Some of the database files are used by ES2 to extract all the needed information for calculating metrics.
Each file is a table that contains specific symbol information. A list of the database files used, along with a

short explanation of their content is given in Table 3.

File Table Record Format
Suffix Description
cl Classes name?start_position?filename;end_position?attributes?{}?{class template}?{}?{comment}
in Inheritances class?base-class?start_position?filename;end_position?attributes?{}?{class

template}?{inheritance?template}?{comment}

iu Include included_file?start_position?include_from_file;0.0?70x0?{}?{}?{}?{}
iv Instance class?variable-
variables name?start_position?filename;end_position?attributes?{type}?{}?{}?{comment}
ma Macros name?start_position?filename;end_position?attributes?{}?{}?{}?{comment}
md Method class?name?start_position?filename;end_position?attributes?{ret_type}?{arg_types}?

definitions {arg_names}?{comment}

t Typedefs name?position?filename;attributes?{original}?{}?{comment}

un Unions name?position?filename;attributes?{}?{}?{comment}

Table 3: List of SN database files used as inputs to ES2.

16

3.3 Using ES2

Now that a Source Navigator project is created, along with the database files, we can invoke ES2.

Currently, ES2 works only from the command line.

1. ES2is invoked in a similar way as Source Navigator, but with arguments. Type:

$hone_di rect ory/ SNA52_ES2/ bi n/ ES2 proj dir projnanme access_option

where $honme_di rect ory should be replaced with the real home directory of SN452_ES2.
The command line arguments are:
proj di r: the directory of the .proj file.
pr oj name: project name (without .proj)
acces_option: can be —priv, -prot, - pub or —al I , depending on whether we want to analyze
private, protected, public or all variables and methods

- nyhel p: prints help message (Figure 15).

| File Edit Settings Help

[marta:™]$ ES2
Uzage: AhomesmartasSH452_ES2/bindES2 projectdir project_name access_option[-pub,
-prot, —priv or —alll, For help: fhomesmartasSM452_ES2/bindES2 -myhelp
[marta:“]$ ES2 -myhelp

Uzaget: shomelmartas SN2 _ES2/bin/ESZ projectdir project_name acces_opti
on[-pub, -prot, -priv or -alll, For help: fhomedmartas/SH452_ES2/bindES2 —muhelp.

projectdir home directory of the Source Mavigator project director
y LLanprj)

project_name name of the SW project (without ,projl

-pub treat only public attributes or methods

—priv treat only private attributes or methods

-prot treat only protected attributes or methods

-all treat all attributes or methods

-myhielp thiz help meszage
[marta:™]$

L
/

Figure 15: Example with ES2 giving the usage and help outputs when invoked.

17

2. For our example (v.proj) we should type (if PATH is set):

ES2 /hone/marta v -all

If PATH is not set it should be:

$home_di rect ory/ SNA52_ES2/ bi n/ ES2 / hone/ marta v -all

Upon pressing ENTER, the metrics extraction starts. Messages are displayed while waiting (Figure 16).
For large projects it can take some time. For example, analyzing the V project on a Pentium Il 400MHz
128MB RAM takes about 2 minutes.

| File Edit Settings Help

[marta:”]$ ES2 , w -all

Extracting classes .., (please wait)

Extracting tupedefs ... (please wait)

Extracting included files .., (please wait)

Extracting inheritance info ... (please wait)

Extracting unions ... (please wait)

Analyzing attribute types ... (please wait)

Analyzing method return and argument tupes ... [please wait)
Creating metrics file .., (please wait)

Finished collecting metrics (thanks for waiting),

HOTE : Metrics can be found in & file ./,snprjfv-all-coupling,csv, For best read
ability open it with Sun's StarCalc (Linux) or M5 Excel (Windows) using comma se
parated columns,

[marta:”]1$

L
i

Figure 16: The notification messages provided by ES2 while it is executing.

3. When the execution is finished, two new files will appear in the ./snprj directory: v-all -
coupling.csv and v_coupling. | og. The first file contains calculated metrics, and the second one

log messages (like whether a database file was missing, for example). This is illustrated in Figure 17.

18

File Edit Settings Help

[marta:”1$ 1z .snprjduve
Lahprjiv-all-coupling.cey Lenpridv.e Lshprjde.fu Enprjsuama

Lenprjie,l LEnprjdv.ec Lenprjde,gy Lanprjde.md
LEnprjdue, by Lanpriie, f Lanprjde,icl Lsnprjdue,mi
LEhpr i, ol LEnpride,fd Lsnpride,in Lsnpridv,t
LSRR AL con LZhpridvafil o Lsnprjsv.id LEnpridv.to
LERpE i, ctr LShprjdvafr Lsnpridv,iv Lsnprjdv_coupling.log

[marta:™1$ more .snprjfv_coupling,log
File ./ .snprj/uv,un dogsn't exist

Ho templates in the project,
[martaz15 Al

Figure 17: After extracting the metrics, two additional files are created.

Finally, we should use MS Excel or Sun’s StarCalc to visualize the metrics file. Use comma separated

columns when importing the file, if it is not imported automatically (Figure 18).

T T T p——— - =18 =1

Fink [Yew Jioet FEms [oos [ea Mo tel _ -6 i]
ODFd SLY tRBTlo-- A® = FHI BEH o F e
f =il -u B s | EEEE $ %, WAEE %A 2
w1 e class e -
A B e B e e | e e T e B
[Clace Name _______NStart poat End positi Flenames CAIC [net:CAIC (chaCAED (ng GAEC [ola TMC (inat CMIC (2las CMED (ne CMEC (el ATAIL [IntACAIT| E
"% Bmakbaire 7000 AW 5| =hMAED ES il i] i i i il i i 0 =
3 CHewPmjkDig a0 7|35 ET 2 Z 0 1} 1 | o 0 a
4 |CamsPan 0T 437[SnME1_ES i i} 1 1 i i 0 [0
5 Caloi_Pal B7.012 SE9|ShAE2_EE 1 1 1 1 2 | o o a LAY
B |CommandddPar {32048 136.1)50ME3_EE a o 2 z o 1 0 0 a =
|CommandClyact 253 149 2727 ShMED EE] i} a 3 1} a 19 18 u} o
B DlgCmdList H.012 FT|EhMED EE 1 1 1 1 o u} 1 1 a L
8 " avaPrajeciDialag 19.005 361|EhM5) EE 2 2 a a 1 1 il 1] a)
|10 |LsbaEdClae e B3.015 526 ShiR) EE a 1] 3 3 1] a o n a n
11 |LabatdPart BE MG 1911|=heAd_ES i i] 3 3 i i 0 i i
12 MARK_RANGE 104.013 1127 5hid52_EE a o 1 1 o a 2} 1] a %
13 MenuButian £.019 67| EnME3 ES 2 z 1 i i il il [0 @
14 Manulrfo .03 46,7 ZhH52_EE a il 1 1 1] 1} o 0 a
15 |PMenuButian 47.012 7. 7| ShME2 BT 2 2 1 1 1] i} o I il
16 FManulnfa 3B.Mm3 45.7|ShA52_EE a 1] 1 ! 1] a o o a
A7 Panelist 2.013 S0.T|SRMED EE 1 1 1 1 D i} o o il
18 Pictura 101 ES.T|SnME) EE] i} 2 2 1} a &} 1] u}
18 Sl larsFad 114.016 114,27 ZhME2 ER a o 1 1 o 0 o o a
A0 5 cralbar 3P art T4.018 05 1{ShMEY EE 0 1] 1 1 1] a o o ji]
|21 Shape 1301 26 7|ZhuEd EE L] 1 1 1] a o n a
22 SimpkeSdClassPan B3.018 TOL1|=hAED ES 0 1] 7 7 D a il I 1]
23 SimplecdP i B1.016 901 ShAS2_ES a o 7 [o a 2} 1] a
24 {Slider 0l ss Parl 114016 114.27|ShMED EE il i} 1 i i il il [0
23 B lderSan 4.5 W51/ 5hA52_EE a 1] 1 1 1] 1} o 0 a
|25 StabusList M3 ET[ShMEI ES 1 1 1 1] i 0 1 o
A7 Tasklwt 41.049 4E7{ShAED EE 1 1. 1 1 1] a o o]
2 Thime[OClazsPar B3.015 TO3|ShUED EE a 1] B [D a o n a
2. ThraaDPart 5016 £0.3)EnMGD EE] 0 G] 1} a &} 1] i}
|30 ToggekeddPan B7.015 0.1/ EhMED EE a o 1 ! o 1} o 0 a
a1 WendLiat 13.m9 2B7{ShAGD EE 2 2 1 1 D a o I a
| 32| Camg: 82017 E7 B[ShUEd EE 1 1 1] 1} 1] a o n a
33" Command3dClassFec. 105.015 111.1|5hA2_ES 3 3 a 1] 1] a i} 1] a =
A _CommandIdRec 143.015 145.1/5hd52_EE i 4 a o o a 2} 1] a pj
35 LabeOdClassRe B4 015 i 1[EnME3 ES 3 5 il il i il il [0 x B
A [- al)-comghing || i— R I
GEE T I it I [T s

Figure 18: Example of what you should see when opening the .csv file in MS Excel.

19

Note that the first two columns after the class name give start and end positions of the class: the first
number before the dot is the line number, and the second one is the position of the character on that line.
The format is taken directly from Source Navigator. It is important to have the position in order to

distinguish between classes with the same name (which happens in C++ if you have #i f def).

4 Special Cases

41 C++

ES2 works on C++ code, but not all the subtleties of the C++ language are covered. This is partially
because Source Navigator's parser does not provide enough information, or because it has been left for
future development by us. In this section we will explain the limitations of ES2. In addition, some cases
demand more explanations on how the coupling is measured because there were implementation choices
that had to be made. Most of the examples are taken from the ACE (Adaptive Communications

Environment) library [13, 14].

It should be noted that, based on our experiences extracting metrics from a number of different systems,
the limitations of ES2 are minor given that they deal with some cases that do not occur very often (at least
in the systems that we have studied thus far). Furthermore, in practice, the extracted metrics are used in
statistical analyses. The choices we made (explained below) will usually not have a noticeable influence

on the results of the statistical analyses.
4.1.1 Method pointers

Method pointers are not parsed well by Source Navigator. In the case showed in Figure 19, method

typedef int (*ACE_QOS_CONDI TI ON_FUNC) (i ovec *caller_id,
i ovec *caller_data,
ACE_QoS *socket _qgos,
ACE_QoS * group_socket _qgos,
i ovec *callee_id,

i ovec *call ee_data,
ACE_SOCK_GROUP *g, CM coupling
u_l ong cal | backdat a) ;

class ACE Export ACE Accept QoS Parans / CA coupling
{

ACE_Accept QoS Parans (ACE_QOS_CONDI TI ON_FUNC gos_condi ti on_cal | back =
u_long callback_data = 0);

ACE_QOS_CONDI TION_FUNC qgos_condi tion_cal | back_;

Figure 19: Example of a method pointer to illustrate its impact on computed metrics.

20

pointer ACE_QOS_CONDITION_FUNC would be presented in the database as int(*)(), i.e., only the
return type (i nt) will be present in the database, whereas method argument types will be omitted (i ovec,
AC_Q©S, ACE_SOCK_GROUP, u_long). So, we had no choice (without changing the parser) than to limit

coupling measurements involving method pointers to their return types.

The question is how to consider coupling with method pointers: as class-attribute or class-method
coupling ? We decided to treat it as class-attribute coupling if a method pointer is used as an attribute,

and as class-method coupling if it is used as a method’s return type, or as a method’s argument.

In fact, in the above case, there will be no coupling, because the method pointer’s return type is i nt. If
the method pointer's arguments were in the database, there would be coupling between

ACE_Accept _QoS_Par ans and the method pointer's argument class types (i ovec and ACE_QoS).

4.1.2 Macros
4.1.2.1 Macro definitions

Source Navigator does not pre-process the code, so we did not treat macro definitions even if they can
introduce coupling. Figure 20 shows an example of such non-treated coupling. The advantage of not
performing any pre-processing is that SN can be very robust compared to other C++ metrics analyzers
that we have worked with. For instance, we have been able to start collecting metrics from systems using
ES2 within 5 minutes of installation. For other metrics analyzers we sometimes had to spend a few

months setting up the environment before metrics could be computed.

if defined (ACE_HAS TEMPLATE TYPEDEFS)

define ACE_MVAP_MEMORY_POCOL ACE_MVAP_Menory_Pool

el se

define ACE_MVAP_MEMCORY_POOL ACE_MVAP_Menory_Pool , ACE_MVAP_Menory_Pool _Option
endi f
cl ass ACE_Export ACE_MEM SAP

f (ACE_HAS PCSI TI ON_| NDEPENDENT POl NTERS == 1)

typedef ACE_Mal | oc_T<ACE_MVAP_MEMORY_POOL, ACE Process_Mitex, ACE_PI_Control _Bl ock>
MALLOC TYPE;

#el se

typedef ACE_Mal | oc_T<ACE MVAP_MEMORY_POOL, ACE_Process_Mitex, ACE Control _Bl ock>
MALLOC _TYPE;

#endi f

MALLOC TYPE *shm nal | oc_;

Figure 20: Example of macro definitions.

21

In this case our tool will find class-attribute coupling between ACE_MEM_SAP and ACE_Process_Mutex,
ACE_PI_Control_Block and ACE_PI_Control_Block, but not with ACE_MMAP_Memory Pool and
ACE_MMAP_Memory_Pool_Option (macro ACE_MMAP_MEMORY_POOL is not treated).

4.1.2.2 Macro if-else statements

Macro if-else statements pose a different problem. If definitions are protected by macro statements, there
can be more than one typedef or class with the same name in the same file. Preprocessing would
certainly remove this ambiguity, but when trying to use unprocessed code, one would have to check both
definitions. For this reason, we treat them as distinct couplings. Figure 21 shows such a case. Here our
tool would find class-attribute coupling between ACE_ATM Accept or and both ACE_SOCK_Acceptor and
ACE_TLI _Acceptor. Furthermore, from a cognitive perspective (see [7] for a detailed cognitive model
justifying the object-oriented computed by ES2), someone comprehending the code will likely trace

through the links to other classes for all parts of a guarded #i f def .

#if defined (ACE_HAS FORE ATM W52)

#i ncl ude " SOCK_Acceptor. h"
t ypedef ACE_SOCK Acceptor ATM Acceptor;

#el i f defined (ACE_HAS_FORE_ATM XTI)

#i ncl ude "TLI _Acceptor.h”
typedef ACE_TLI _Acceptor ATM Acceptor;

#endi f

cl ass ACE _Export ACE_ATM Accept or
{

Figure 21: Example of macro if-else statements.

4.1.3 Templates

Template classes are treated as any other class for import and export coupling between themselves and
other classes. But, template arguments pose a problem: a template class can have an attribute (or
method argument or return type) whose type is of the template argument’s type. If that template argument
is of class type, there should be coupling between these two classes. The problem is that we cannot
know the exact type of the template argument until that template class is used, and template arguments

are set with real types. So, in order to measure this kind of coupling, we have to find every single usage

of that particular class (in attributes or in methods) and to associate template arguments with all the types

they can possibly have. Figure 22 illustrates this case.

tenpl ate <ACE_MEM POOL_1, class ACE_LOCK>
cl ass ACE_Local _Nanme_Space: public ACE_Nane_Space
{

typedef ACE_Al | ocat or _Adapter <ACE Ml |l oc <ACE_MEM POOL_2, ACE LOCK> >
ALLCCATOR;

ACE_Nane_Space_Map <ALLOCATOR> *nane_space_nmap_;

tenpl ate <cl ass ALLOCATOR>
cl ass ACE_Nane_Space_Map: public MAP_MANAGER
{

public:
ACE_Name_Space_Map (ALLOCATOR *all oc);

Figure 22: Example of template class usage.

As we can see in Figure 22, class ACE_Nane_Space_Map has a method argument of type ALLOCATOR,
which is its template argument type. To calculate coupling we have to know the exact type of ALLOCATOR.
Therefore, we have to look for uses of that class. One of them is in the class ACE Local _Nane_Space
that has an attribute of the type ACE Nane_Space_Map <ALLOCATOR>, where ALLOCATOR is in fact
ACE_Al | ocat or _Adapter <ACE Malloc <ACE MEM POOL_2, ACE_LOCK> >. Now we can say that the
class ACE_Nane_Space_Map is coupled to ACE_Al | ocat or _Adapter and ACE_Mall oc, as well as with
types of ACE_MEM POOL_2 (macro, not treated) and ACE_LOCK (template argument, whose type will be

found in a similar way).

It is obvious that we can only consider coupling between template classes and template arguments after
the whole code is processed and every single usage of each template class is found. Template
arguments can be of template class’ parent type: we check for it when we find that there is coupling, in

order to treat it as ancestor-descendant coupling.

23

Template structures are not parsed in Source Navigator and therefore, are not considered by our tool. In
the following case:

tenpl ate <class T>
struct conj_func

{
T X;

The ES2 tool will not see coupling between conj _f unc and template argument T, but the struct itself will

be considered for coupling (i.e., only the template arguments will not be).
4.1.4 Forward declarations

If a class is not in the scope of our class, it can still be used for attribute and method types using forward
declaration:

class A

{

cl ass B;
B b;

}

We will consider class-attribute coupling between class A and class B, if class B is defined somewhere in
the code, i.e., if it can be found in the class database. If not (which can be the case, if B is supposed to be
defined in some . cpp file), we do not consider this as a coupling. The reason is simple: we do not have

any other way to prove that B is a class other than to look for it in the class database.

In some cases the system is a library and the declared classes will be defined in applications that use the

library. For such cases, it is not possible to account for any coupling.

24

4.1.5 Inner classes

As metrics (such as defects or effort) are usually not calculated for inner classes, we do not consider
inner classes in our coupling measurements. But as the parser does not distinguish inner classes from
others, we have to explicitly check for them. Figure 23 shows an example of an inner class and its
interaction with other classes. If an inner class has an attribute or method type of some other class, we
consider that there is coupling between its outmost class and that class (in our example class A is
coupled with class C, because of the attribute c in the inner class B). If an outer class has an attribute or
method type of an inner class, there is no coupling between them (no coupling between class A and class

B because of the attribute b).

class A
class B;
B b;
class B

A a;
C c;

Figure 23: Example of an inner class.

If a class is coupled to an inner class of some other class, only coupling with the outer class is considered

(class C is coupled only with the class A, and not with the inner class B, because of the attribute ab).

4.1.6 Parent classes

The simplest case of ancestor-descendant coupling would be if an attribute or method type is of the
parent's class. But there is another case which is also considered as ancestor-descendant coupling. If, for
instance, an attribute or method type is a t ypedef defined in a parent class, we consider it as ancestor-
descendants coupling even if the t ypedef turns out to be a primitive type. The reason is that in such a
case, when trying to understand the code, we will have to look into the parent class to resolve the

typedef.

4.1.7 Complex types

We call complex types of the form X::Y. X can be either a class or a typedef (in which case its redefined
type is found). Y can be either an inner class (in which case we consider only coupling with X and not Y)
or a typedef defined in the class X or its parent class, in which case an effort is made to find a type

redefined by that t ypedef (if it is of a class type, we consider it as coupling).

25

In the case of templates we could have the following case:

tenpl ate <cl ass A>

class B
{
A :C X;
}

In this case we consider coupling between class B and a class that can be a type of the template
argument A. But we do not go further: we do not test if that class has a field of the name C (inner class or
t ypedef). Eventually, it could be done, but as we did not encounter such cases in a number of large

systems that we analyzed, we left it unconsidered.

4.1.8 Unions

Unions are not considered as base classes, but we treat them as such and consider that there is coupling

between a union and its elements if they are of a class type (as we do for structures).

4.1.9 Operator overloading

In the case of operator overloading the Source Navigator's C++ parser does not parse correctly the return

types in the following three situations (in each of these situations the return type will be i nt):

- when the return type is a class type returned by value (if it is returned by reference, it parses it
correctly);

- when the return type is a template argument type;

- when the return type is a t ypedef .

Hereafter we show two examples of wrongly calculated coupling caused by this problem. In the following
example, instead of c4_Rowthe database file shows i nt (coupling between c4Stri ngProp and c4_Row is

therefore not taken into account):

class c4_StringProp: public c4_Property
public:
i:l4l_Row operator[] (const char*) const;
b
Or, in this example instead of template argument TYPE, the database shows int (coupling between a

class that could be TYPE and ACE_At omi ¢_Qp not counted):

26

tenpl ate <class ACE_LOCK, class TYPE>
class ACE_Atonm c_Op

public:

TYPE operator-- (int);

4.1.10 Namespace keyword

Source Navigator does not support the C++ keyword nanespace. This leads to scoping problems which
cannot be resolved if namespace support is not added. Right now, the scope of a class is the file in which
that class is defined and all the files included by that file. The nanmespace keyword does not require file
inclusion: a type defined in the same namespace can be in a file not included by our class' file, and still be
visible by our class. If we decide not to define the scope as we did, and to consider all project files, we
can have an error in scope when namespace is not used. So, for now, until the C++ parser is changed, it

is not advised to use this tool for C++ code that makes extensive use of namespaces.
Even when namespaces are in the same file, classes are not seen by SN if they are declared out of the
namespace (in the example below, class A is declared as N::A, because it is part of namespace N). In

this case SN will find only class B, and not class A, which again can lead to erroneous metrics.

nanespace N

{
class A
}
class N.: A
{
}s
nanespace M
class B
{
}s

4.1.11 Other keywords

Keyword t ypenane is not supported by Source Navigator, and our tool simply ignores it (like it ignores
keywords vi rtual and i nline and primitive types). It treats everything as possible types, so this should

not be an issue.

27

4.2 Java

The Java parser in Source Navigator is considerably younger than the C++ parser. Therefore it tends to

have more limitations.

4.2.1 Javaversion

Source Navigator parses Java 1.0. For changes in the Java grammar from Java 1.0 to Java 1.1 and 1.2

see Java grammars from the following site: <http://www.cs.princeton.edu/~appel/modern/java/CUP/>.

4.2.2 Types of local and instance variables

Source Navigator’'s Java parser is not fully functional: it does not recognize instance and local variable
types4. It recognizes, however, method parameters and return type. This means that we are able to
extract information about class-method coupling (see section 1.1), but not about class-attribute coupling.

In the output file the values for class-attribute couplings are therefore all set to O.

4.2.3 Inner classes

Inner classes in Java are treated the same way as in C++ (see section 4.1.5).

424 JARfiles

Source Navigator does not recognize . j ar files, so any class in a .jar file will not be considered as a
part of the system. Jar files are usually used for .cl ass files. If that is the case, even if they are not
zipped, they would not be considered, because it is not source code. If you want those classes to be
considered as a part of the system, you should leave them unzipped and in .java format, to allow the

Java parser to recognize them.

4.2.5 Interfaces

Interfaces are considered as classes: if a class has a method return or argument type of an interface
type, it will be considered as coupling. Interfaces can be inherited, so DIT (depth of inheritance tree) is

calculated for them also. In the output file no distinction is made between classes and interfaces.

“ This can be visualised in the Source Navigator's Symbols window: if we choose to see only instance variables, we will see that the
column for their type is empty (the same goes for local variables).

28

4.2.6 Packages

Java core classes are organized in packages. User defined classes can be organized in user defined
packages, or, if not, they are put in a default package. Classes are distinguished by their package, which
is included in their fully qualified name. For instance, class String’s fully qualified name is in fact
java.lang. String (j ava. | ang package is imported by default). We can use its short name, String, if
there is no other class with the same short name in other imported packages. But if there is such a case,

fully qualified names should be used to distinguish between them.

Source Navigator, unfortunately, does not recognize packages. Therefore, it does not recognize fully
qualified names, nor does it recognize which class of two classes with the same short name is part of our
package or if its in an imported package. This leads to some limitations of our tool, which are presented

below.

4.2.6.1 Classes with the same short name

Due to the above-mentioned limitations of Source Navigator's Java parser, if a project contains more
classes or interfaces with the same short name, it is not possible to distinguish which one of them is
coupled to a class that contains such a type.

For example, in Figure 24 we see that the class Abstract Li st, which implements interface Li st
(found in the same package, j ava. util), has a method subList whose return type is of type List. The
project contains two classes with the name List, but in different packages: the already mentioned
interface j ava. util . Li st and a class j ava. awt . Li st. As the package j ava. awt is not imported by this
file, there is no ambiguity for the compiler: here Li st is in fact java.util. List. But, as SN does not
distinguish between packages, we do not have enough information to know the exact type of Li st.
Therefore, we have no choice but to take into account both of them. In this case, class Abst ract Li st will

have OCMIC 1 larger than expected, and j ava. awt . Li st will have OCMEC 1 larger than expected.

29

package java. util;

public abstract class AbstractlList extends AbstractColl ection inplements
Li st

{

public List subList(int from ndex, int tolndex)
{

return new SubList(this, from ndex, tolndex);
}
}

cl ass SubLi st extends AbstractList

{
o

package java. util;

public interface List extends Collection

{
1

package j ava. awt ;

public class List extends Conponent inplenents Itentel ectable, Serializable

{
,

Figure 24: Example of a class and an interface with the same name.

4.2.6.2 Fully qualified class names

As we mentioned, Java uses fully qualified names for classes (even if programmers usually use short
names, for convenience). Unfortunately, Source Navigator puts only short names in the database files,
which means that long names are not recognized as class types. So if there is a return, parameter or
parent type written as a fully qualified name, the coupling will not be seen. There is probably a way to

handle that without changing the parser, but it is left for the next release.

4.2.7 Exceptions and coupling

When we consider coupling between a class and a method we consider method return and parameter
types. However, in Java, exception handling can be done by adding a “throws” clause after a method
signature. This means that, by parsing a method signature, we can find which exception the class throws.
If this exception is our project’s class, we could consider coupling between the class that contains that
method and the exception class. It would be a special kind of coupling between classes and exception
classes. Of course, all exception handling would not be covered by parsing only the method signature

(try-catch clause is in a method’s body), so if we would like to cover it all there should be a major

change in the Java parser. This type of coupling could possibly be measured for C++ code too, as C++

also has a try- cat ch clause.

4.2.8 File extensions

Source Navigator will automatically recognize only . j ava file extensions (and not . JAVA, . j av or similar),

but this can be easily configured in File-Project Preferences window of Source Navigator.

5 Software License

This software is copyright © 2000-2001 by the National Research Council of Canada. It is published
under the GNU General Public License, which is reproduced in the distribution in a file called
"GNUGPL.txt", for the benefit of the software engineering community. This software comes with

absolutely no warranty, but we would appreciate bug reports and we will endeavor to fix them.

6 References

[1] S. Chidamber and C. Kemerer, "A Metrics Suite for Object-Oriented Design". In IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[2] K. EI Emam, "Object-Oriented Metrics: A Review of Theory and Practice,” in Advances in
Software Engineering: Topics in Comprehension, Evolution, and Evaluation (to appear), O. Tanir
and H. Erdogmus (eds.): Spinger-Verlag, 2000.

[3] K. El-Emam, S. Benlarbi, N. Goel, and S. Rai, "A Validation of Object-Oriented Metrics,"
Technical Report, National Research Council of Canada, NRC/ERB 1063 1999.

[4] K. EI-Emam and W. Melo, "The Prediction of Faulty Classes Using Object-Oriented Design
Metrics," Technical Report, National Research Council of Canada, NRC/ERB 1064 1999.

[5] K. EI-Emam, S. Benlarbi, N. Goel, and S. Rai, "The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics". In IEEE Transactions on Software Engineering (to appear),
2001.

[6] N. Fenton and N. Ohlsson, "Quantitative Analysis of Faults and Failures in a Complex Software
System". In IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 797 -814, 2000.

[7] D. Glasberg, K. El Emam, W. Melo, and N. Madhaviji, "Validating Object-oriented Design Metrics
on a Commercial Java Application," Technical Report, National Research Council of Canada (to
appear in the Journal of Systems and Software), NRC/ERB-1080 2000.

[8] W. Harrison, "Using Software Metrics to Allocate Testing Resources". In Journal of Management
Information Systems, vol. 4, no. 4, pp. 93-105, 1988.

31

9]

[10]

[11]

[12]
[13]

[14]

[15]

M. Kaaniche and K. Kanoun, "Reliability of a Commercial Telecommunications System". In
Proceedings of the International Symposium on Software Reliability Engineering, pp. 207-212,
1996.

K.-H. Moller and D. Paulish, "An Empirical Investigation of Software Fault Distribution”. In
Proceedings of the First International Software Metrics Symposium, pp. 82-90, 1993.

N. Ohisson and H. Alberg, "Predicting Fault-Prone Software Modules in Telephone Switches". In
IEEE Transactions on Software Engineering, vol. 22, no. 12, pp. 886-894, 1996.

J. Ousterhout, Tcl and the Tk Toolkit: Addison-Wesley, 1994,

D. Schmidt, "A System of Reusable Design Patterns for Communication Software," in The Theory
and Practice of Object Systems, S. Berzuk (ed.): Wiley, 1995.

D. Schmidt and P. Stephenson, "Experiences Using Design Patterns to Evolve System Software
Across Diverse OS Platforms". In Proceedings of the 9th European Conference on Object
Oriented Programming, 1995.

B. Welch, Practical Programming with Tcl and Tk: Prentice Hall, 1997.

