

Steering G	roup Members
• Phil Babel	US Air Force (Co-Chair)
Bob Rassa	Raytheon (Co-Chair)
Clyde Chittister	SEI
• David E. McConnell	US Navy
Michael Devine	US Army
Linda Ibrahim	FAA
Bob Lentz	General Dynamics
• Mike Phillips	SEI
 Joan Weszka 	Lockheed Martin
Hal Wilson	Litton PRC
• Mike Zsak	OUSD (A&T)
Joe Farinello	Support from OUSD (A&T)
Brenda Zettervall	Support from OUSD (A&T)

Product Development Team Architecture IPT

- Bill Schoening
- Roger Bate
- Mark Cavanaugh
- Joe Graffius
- Craig Hollenbach
- Jane Moon
- Boeing (Co-lead) SEI (Co-lead) SEI Honeywell PRC
- Raytheon

Product Development Team IPPD IPT

- John Consiglio GD-Electric Boat (Co -lead)
- Rich Turner H
- FAA (Co-lead)
- John Kordik
- USAF

USAF

• John Price

Product Development Team Assessment Methodology IPT

- Rick Hefner
- Donna Dunaway
- Dennis Ahern
- Don Barber
- Dennis Goldenson
- Dave Kitson
- Guy Taylor
- Karen Womack
- TRW (Co-lead) SEI (Co-Lead) Northrop-Grumman Honeywell SEI SEI USN CSC

Product Development Team Training Methodology IPT • Gary Wolf Raytheon (Co-lead) • Jon Gross

- Bruce Allgood
- Peter Capell
- SEI (Co-lead)
- **USAF**
- SEI SEI
- Larry Jones

Product Development Team Requirements IPT

- Aaron Clouse Raytheon (Co-lead)
 - IBM/SEI (Co-lead)
- Bob McNeillJack Ferguson
- SEI
- Lt Col Joe Jarzombek USAF
- Sandy Shrum SEI

The Current Situation

Explosion of CMMs and CMM-like models

Multiple models within an organization

Multiple assessments

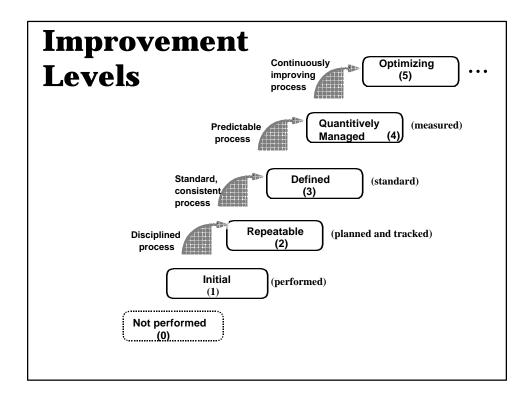
Multiple training

Multiple expenses

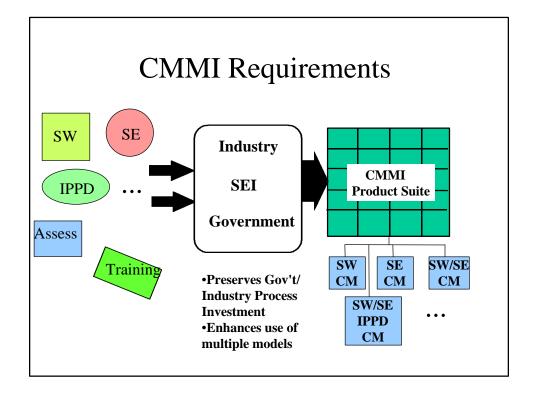
Why is this a problem?

Similar process improvement concepts, but...

- Different model representations (e.g. staged, continuous, questionnaire, hybrid)
- Different terminology
- Different content
- Different conclusions
- Different appraisal methods



Improvement in any discipline is a function of performing:


- *implementing practices* that reflect the fundamentals of a particular topic (e.g. configuration management)
- *institutionalizing practices* that lead to sustainment and improvement of an implementation

Thus all CMMI source models contain:

- Implementing practices grouped by affinity
- *institutionalizing practices* that vary from model to model, however all models specify
 - *levels* that describe increasing capability to perform

Design Goals

Eliminate inconsistencies,

Reduce duplication,

Reduce the cost of implementing model-based process improvement,

Increase clarity and understanding, by using:

- Common terminology
- Consistent style
- Uniform construction rules
- Common components..., with

Minimal impact on legacy efforts

Benefits

Efficient, effective assessment and improvement across multiple process disciplines in an organization

Reduced training and assessment costs

- A common, integrated vision of improvement for all elements of an organization
- A means of representing new discipline-specific information in a standard, proven process improvement context

CMMI Design Approach

Inputs

Source Models

Capability Maturity Model for Software V2, draft C

EIA Interim Standard 731, System Engineering Capability Model

Integrated Product Development Capability Maturity Model, draft V0.98

SW-CMM V2 Key Process Areas

- Requirements Management
- Software Project Planning
- Software Project Control
- Software Acquisition
 Management
- Software Quality Assurance
- Software Configuration
 Management
- Organization Process Focus
- Organization Process Definition
- Integrated Software
 Management
- Organization Training Program

- Software Product Engineering
- Project Interface Coordination
- Peer Reviews
- Organization Software Asset Commonality
- Organization Process
 Performance
- Statistical Process Management
- Defect Prevention
- Organization Process & Technology Innovation
- Organization Improvement
 Deployment

SECM Focus Areas

- Define Stakeholder and System Level Requirements
- Define Technical Problem
- Define Solution
- Assess and Select
- Integrate System
- Verify System
- Validate System
- Plan and Organize
- Monitor and Control
- Integrate Disciplines

- Coordinate with Suppliers
- Manage Risk
- Manage Data
- Manage Configurations
- Ensure Quality
- Define and Improve the Systems Engineering Process
- Manage Competency
- Manage Technology
- Manage Systems Engineering Support Environment

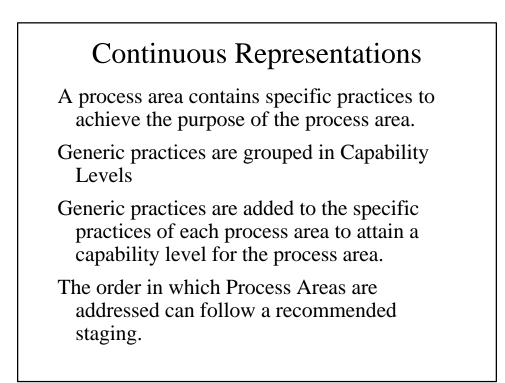
IPD-CMM Process Areas

- Product Selection
- Product Life Cycle Definition
- Product Requirements Evolution
- Product Solution
- Product Build, Verification & Test
- Product Support & Retirement
- Process Planning
- Configuration Management
- Ensuring Quality
- Process Monitoring and Control
- Organization Training Program

- Organization Process Definition
- Organization Process Focus
- Quantitative Techniques
- Product Line Evolution
- Process Change Management
- Project Leadership
- leadership Mechanisms
- Work Environment
- Team Environment
- Shared Vision
- Organization Leadership
- Organizational Environment Adaptation

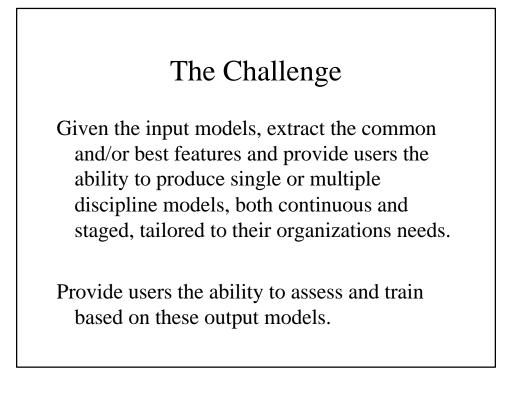
Example Map of Process Areas To Source Models

CMMI PA	SW-CMM V2.0C	EIA SECM V1.0	IPD-CMM V0.98
Requirements Management	X	X	
Supplier Agreement Management	X	X	X
Configuration Management	X	X	X
Data Management		X	
Training	X	X	X
Customer and Product Support	X		X


Staged Representations

Key Process Areas are grouped in the stages (levels) from 2 to 5

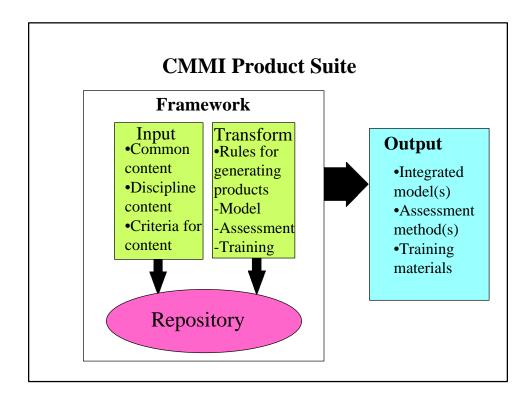
A Key Process Area contains specific practices (activities) to achieve the purpose of the process area.

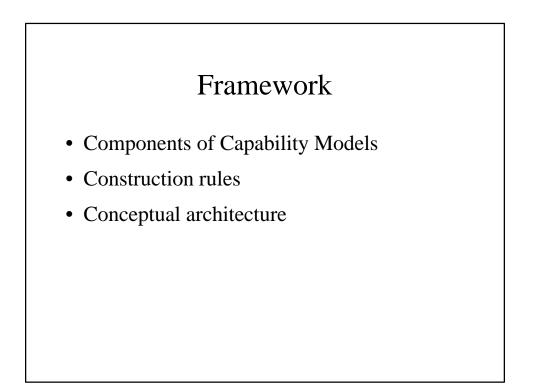

For a Key Process Area at a given stage, institutionalization practices are integral to the process area.

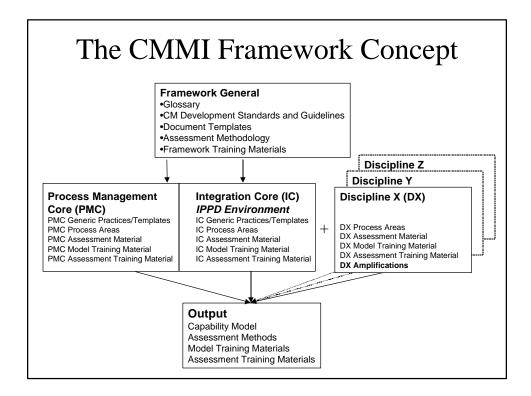
Level	Focus	Key Process Areas
5 Optimizing	Continuous process improvement	Org improvement Deployment Org Process and Tech Innovation Defect Prevention
4 Quantitatively Managed	Quantitative management	Organization Process Performance Statistical Process Management Org Software Asset Commonality
3 Defined	Process Standardization	Peer Reviews Project Interface Coordination Software Product Engineering Organization Training Program Organization Process Definition Organization Process Focus
2 Repeatable	Basic Project Management	Software Configuration Management Software Quality Assurance Software Acquisition Management Software Project Control Software Project Planning Requirements Management
1 Initial	Competent peop	le and heroics

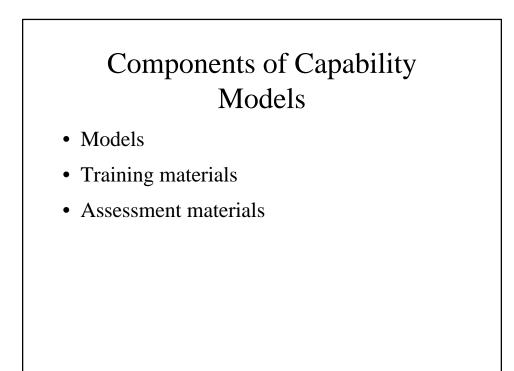
Continuous M	\mathbf{O}	le	1 _	S	E	CI	M			
		A U .	•							
	L		L	L	L	L	L	L	L	L
	е		е	е	е	е	е	е	е	е
	v		v	v	v	v	v	v	v	v
	е		е	е	е	е	е	е	е	е
	I		I	I	I	I	I.	I	I	
	1		2	2	3	3	4	4	5	5
	S		S	G	S	G	S	G	S	G
	Р		Р	Р	Р	Р	Р	Ρ	Р	Р
	S		s	S	s	S	s	S	S	S
1.1 Define Stakeholder & Sys Reqs		1								
1.2 Define Technical problem										
1.3 Define Solution										<u> </u>
1.4 Assess and Select										
1.5 Integrate system										
1.6 Verify system										
1.7 Validate System				_						
Capability Level		1		2		3		4		5

Source Models					
SW-CMM V2 Draft C	EIA IS 731 SECM	IPD-CMM V0.97			
Staged	Continuous	Hybrid			
Maturity Levels	Capability Levels Categories	Maturity and Capability Levels			
Key Process Areas	Focus Areas	Process Areas			
Key Process Area Goals	Themes	Capability and Process Area Goals			
Activities Common Feature	Specific Practices	Base Practices			
Common Features	Generic Practices	Generic Practices			
	Generic Attributes				

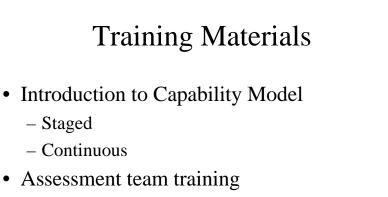



CMMI Design Approach


Design


Our Solution

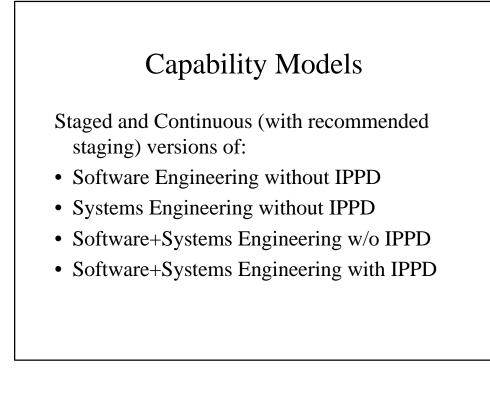
Develop a Product Suite consisting of a Framework from which the user can easily output tailored, integrated Capability Models and their associated assessment methods and training materials.



Models

- Process areas (PA) (focus areas, key process areas)
- Specific practices (base practices or activities)
- Generic practices (GPs or Common Features)
- Capability levels
- Stages
- Maturity levels
- Discipline-specific amplifications
- Descriptive material

- Lead assessor training
- Use of framework training


Assessment Materials

- Assessment planning
- Data collection methods and tools
 - Staged
 - Continuous
- Analysis methods

Assessment Framework

- Assessment types to address customer needs
- Minimum (core) requirements for all assessment types
- Rules for generating assessment methods
- Compliance criteria
- Tailoring process, guidelines

CMMI Products

Assessment Material

- Assessment requirements
- Assessment methodology
- Assessment data collection methods and tools (e.g., questionnaires, interviews)
- Assessment Team qualifications

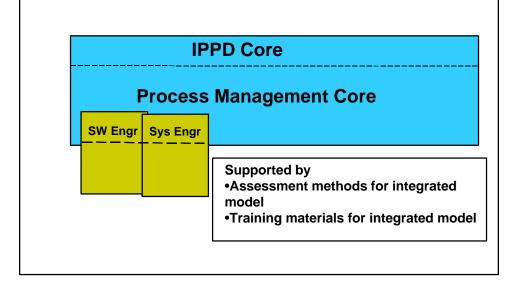
Training Material

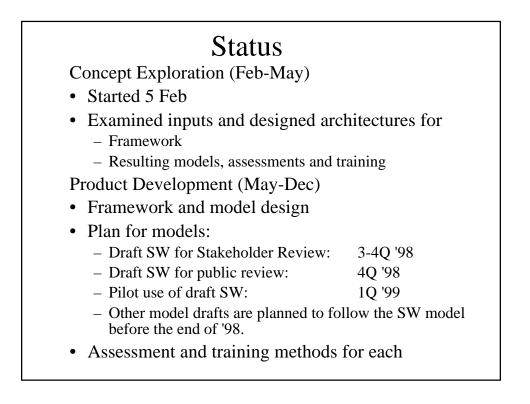
- Capability Model Training
- Assessment Training
 - Team Training
 - -Lead Assessor Training

Developer Material

- Glossary
- Framework and model content criteria
- Framework Training

Example output of CMMI -Single Discipline


IPPD Core


Process Management Core

SW Eng

Supported by •Assessment methods for integrated model •Training materials for integrated model

Example output of CMMI-Multiple Disciplines

Conclusion

CMMI is a collaborative effort among industry, government and the SEI.

We have a development team and Steering Group, and an initial schedule.

We will report status on the SEI web site:

www.sei.cmu.edu

Contact: e-mail customer-relations@sei.cmu.edu

phone (412) 268-5800