
June 25, 2001

Appendix 2
Page1

Instructions and Sample Definitions for the Sample Software Product Development
Report (Sample SPDR)
version date 06/25/01 for use with SPDR-062501.xls

INSTRUCTIONS FOR THE SAMPLE SOFTWARE PRODUCT
DEVELOPMENT REPORT (SPDR)

INTRODUCTION

The sample Software Product Development Report (SPDR) describes a single
software development or upgrade effort. This effort can be the subject of a single
software contract, a deliverable release within a larger software effort, or a software
component of a larger system contract. The subject development or upgrade can be
performed commercially or as an internal (“organic”) DoD effort.1 The report is designed
to record both the expectations and actual results of new software developments or
upgrades. It is not designed for reporting on, nor should it be used for, purely software
maintenance or operation efforts.

This document explains the content of the sample SPDR by describing each
sample data item. Sample SPDR forms are provided as a separate document. The data
items shown on the sample forms are examples that must be tailored to be consistent with
data that the development organization normally maintains to manage a project. Three
instances of the SPDR are required to record the customer’s and developer’s expectations
as well as the actual outcome of a project: a planning report completed by the program
office at the time of solicitation, an initial report completed by the developer at the
beginning of development, and a final report completed by the developer at the end of
development. Additional SPDRs are required if the contract consists of multiple releases
of software. In this case, separate SPDRs are required prior to development and after
delivery of each release. The associated forms document (an Excel file) shows untailored
sample SPDR forms for each submission.

A SPDR Data Dictionary that explains the tailored definitions for each data item
must accompany each form. The data descriptions included in these instructions for the
sample SPDR forms can be adapted to created a tailored SPDR Data Dictionary. These
instructions do not explain the exact process by which each reporting project must tailor,
complete, or submit SPDR forms.

The government program management office for a reporting project should
submit an initial instance of the SPDR, tailored as necessary, before contract award (e.g.,
as part of the Cost Analysis Requirements Document or CARD). The development
organization (e.g., contractor or CDA) should submit a second instance of the SPDR,
tailored as agreed upon with the program management office, within 60 days after
contract award. The development organization should submit a final instance of the
SPDR, tailored as agreed upon, at contract completion describing the as-delivered
software product. In the case of multiple incremental deliveries (builds, releases,

1 For convenience here, the term contract is used to mean the authorizing vehicle or agreement
that describes the software development or upgrade project whether or not this is in the form of a
formal contract.

June 25, 2001

Appendix 2
Page2

versions, etc.), the development organization should submit an initial instance of the
SPDR for the expected product at each contracted delivery and a final SPDR at the time
of each delivery.

It is assumed that forms will be submitted as computer files in order to allow
convenient tailoring of the names and numbers of data items. Each Software Product
Development Report must be submitted with a similarly tailored Software Product
Development Report Data Dictionary. The sign-off area on page two includes space to
identify the file name and revision for the associated Software Product Development
Report Data Dictionary.

The Sample SPDR form is divided into two pages. Page one has three parts
(numbered 1 through 3). Page two has two additional parts (numbered 4 and 5) plus a
sign-off area at the end. Space for brief comments, explanations, or context information is
provided after each part. More extensive comments should be documented as part of the
associated data dictionary. The questions for each part of the SPDR are described below.
The following descriptions may be used a basis for the SPDR Data Dictionary which
must accompany any tailored SPDR submission.

INSTRUCTIONS FOR PAGE ONE

Page one is entitled Report Context, Project Description, and Size and has three
parts that correspond to these topics.

Part 1. Report Context

Items 1 through 4 of Part 1 should be completed for all three submissions of the
SPDR. Additional items (5 through 10) are to be completed after the development
organization has been identified (contract award and contract end). Forms tailored to the
three submissions are provided as tabs in the associated forms file.

1. System/Element Name (version/release)
This is the name used to refer to the software product being developed, including

any applicable version, release, build, or other identifier.

2. Report As Of
This is the date as of which all other answers are meaningful for this submission

of the form. If a subsequent report supersedes a previous report, for example to correct an
error, this date would be the retroactive date of the superseded report rather than the
current date.

3. Authorizing Vehicle (MOU, contract/amendment, etc.)
This is the contract number (if applicable) and amendment number (if applicable),

or reference to a memorandum of understanding or other documentation that authorizes
the development of the subject software.

4. Reporting Event

June 25, 2001

Appendix 2
Page3

The event that drives this submission of the SPDR is already shown in the
tailoring. Possible choices are, “CARD,” “Contract Award,” or “Contract End.” Space is
provided to indicate the specific submission number of this form in the event that a
subsequent form is needed to correct or revise an earlier submission.

5. Development Organization
For report submissions after contract award, this is the name of the company or

organization that is the responsible developer of the software product being developed.
(For the initial CARD submission the next six questions do not apply.) Responses may be
aggregated across all software development subcontractors and support contractors on a
one or more forms or one form may be submitted for the work of each development
organization. The associated SPDR Data Dictionary should be used to explain the
mapping of development organizations, software components and SPDR forms. As with
any other tailoring of this form, agreement on the level of aggregation must be reached
between the developer and program office.

6. Certified CMM Level (or equivalent)
This is the Software Engineering Institute (SEI) Capability Maturity Model

(CMM) number of the level (1 through 5) at which the primary development organization
has been formally certified. If no formal certification has been conducted, enter 0 (zero).
If multiple forms are used to represent a single submission, enter the appropriate level for
the relevant organization on each form (or zero). If a single submission is used to
represent the work of multiple organizations, enter the level of the organization that will
be expending the most amount of effort on the development project (not necessarily the
prime contractor) and note this in the associated Software Product Development Report
Data Dictionary. If the government has accepted an alternate assessment mechanism,
enter the results here and explain the meaning of the assessment in the Software Product
Development Report Data Dictionary. Note that this assessment may change between the
Contract Award and Contract End submissions of the SPDR.

7. Certification Date
If the answer to item 7 is non-zero, this is the date when the formal assessment

associated with the indicated level was conducted.

8. Lead Evaluator
If the answer to item 7 is non-zero, this is the name of the person that lead the

formal SEI CMM assessment and determined the maturity level indicated.

9. Affiliation
This is the affiliation of the Lead Certifying Analyst in the previous item.

10. Precedents
Up to five analogous systems that have been developed by the same software

organization or development team are listed here.

June 25, 2001

Appendix 2
Page4

Part 2. Product Description

Most of the items 1 of Part 2 are included on all three variants of the SPDR. Only
the development process and developer experience are omitted from the first (program
office) submission. These item numbers are skipped in the sequence on that form so that
other items have correctly corresponding numbers.

1. Primary Application Type
This response describes the primary application type being developed using one

or more system domain names from the list at the end of these instructions, when
possible. The primary application type describes the domain of the largest part of the
software product. The primary type may be the only application type listed, but any
number of application types may be listed. (Space for four is provided on the form but
computer file submissions of data may include any number.) If none of the examples
shown in the list of application types are appropriate, enter a phrase to describe the
application type and define it in the associated SPDR Data Dictionary. Also use the
associated SPDR Data Dictionary to provide any additional explanation or detail that may
be required to understand the application type.

2. Percent of Product
This is the approximate percentage of the product size that is of the indicated

primary application type, up to 100%.

3. Development Process
For the Contract Award and Contract End submissions, this is the name of the

development process planned or followed for the primary application of the system. Use
common industry terms to describe it, such as waterfall, spiral, or RAD, rather than a
proprietary name that is internal to the development organization. Do not indicate a
software architecture method (such as object-oriented development) or a development
tool (such as PowerBuilder) as these do not specify a particular development process.

4. Upgrade or New
This indicates whether the primary development is new software or an upgrade. A

software system is considered new either if no existing system currently performs its
function or if the development completely replaces an existing system. A software system
that replaces part of an existing system (such as the replacement of a database) should be
considered an upgrade. An existing software system that is being ported to a new
platform or being reengineered to execute as a web or distributed application (for
example) would be considered an upgrade unless it is also being completely redeveloped
from scratch (new requirements, architecture, design, process, code, etc.).

5. Secondary Application Type
If the development contains a major secondary application type, this is indicated

here using the same list as shown for question 1, above.

June 25, 2001

Appendix 2
Page5

6 - 8. Secondary Application Type Details
This indicates the secondary application type, its percentage of the system, its

development method and whether it is new or an upgrade.

9 - 12. Third Application Type and Details
This indicates the third application type, its percentage of the system, its

development method and whether it is new or an upgrade.

13-16. Fourth Application Type Details
This indicates the fourth application type, its percentage of the system, its

development method and whether it is new or an upgrade.
If a project includes more than four application types, add new lines when the

submission is in the form of a computer file. If the submission is by hard copy, submit
additional sheets to describe the additional application types in terms of the same data
items (type, percentage, development method, and novelty).

17. Primary Language
This is the computer language in which most of the development is expected to be

(or was) conducted. This can be a compiled language, such as FORTRAN, Ada, or C, or
it can be an interpreted language, such as Forte. Use the amount of effort spent in
development to determine the primary language rather than the amount of function
delivered. For example, if a system is being developed with a COTS product that supplies
most of the end function and shifts the bulk of the work to creating C language interfaces
to data stores, then C would be the primary language and not the COTS tool scripting
language. Explain any interpretation of this item in the associated Software Product
Development Report Data Dictionary.

18. Percent of Product Size
This shows the approximate amount of the final development effort that is

expected to be (or was) involved with producing code in the Primary Language. This may
differ somewhat from the percent of the final physical product that will be written in this
language since a large portion of the delivered product might use generated code or
COTS products that are not directly developed.

19. Secondary Language
This shows the secondary language used in the development (if any), using the

same definitions given under the Primary Language.

20. Percent of Product Size
This shows the approximate amount of the final development effort that will be

(or was) involved with producing code in the Secondary Language. This may differ
somewhat from the percent of the final physical product that will be written in this
language since a large portion of the delivered product might use generated code or
COTS products that are not directly developed.

21. List COTS/GOTS Applications

June 25, 2001

Appendix 2
Page6

This shows the names of the applications or products that will (or do) participate
in the final delivered product, whether they are commercial off-the-shelf (COTS) or
Government off-the-shelf (GOTS) products. If a proprietary application or product that is
not generally commercially available will be (or was) included, list it here and include an
explanatory remark in the associated Software Product Development Report Data
Dictionary.

22. Peak staff (team size in FTE) expected to work on and charge to this project
This is the expected or actual peak team size, measured in full-time equivalents.

Only include direct labor in this calculation unless otherwise explained in the associated
Software Product Development Report Data Dictionary.

23. Percent of Personnel by experience level in domain
For the Contract Award and Contract End reports, this is the percent of project

personnel that is expected to be (or was) highly experienced in the domain (three or more
years of experience), nominally experienced in the project domain (one to three years of
experience), and entry level (zero to one year of experience). Percentages are normalized
by staff-years (such that, for example, a single highly experienced person who works on
the project for two years constitutes the same percentage of the total as two entry level
people who each contribute a year of effort). The experience level of a person is rated as
he or she joins the project so that experience on this project is not counted towards the
rating.

Part 3. Product Size Reporting

Part 3 asks for quantitative information about the size of the software
development. If this is not the final submission of the SPDR (Contract End) then provide
estimates-at-complete. If this is the final submission after software delivery then provide
actual values for the entire development project covered by this report.

1. Number of Requirements, not including External Interface Requirements
This is the number of requirements (to be) satisfied by the developed software

product. In the initial reports, provide estimates of the total number of requirements to be
implemented by the software being developed. In the final submission of the SPDR,
provide the actual number of requirements implemented by the developed software using,
if possible, the same counting method as was used in the previous reports. Do not count
requirements concerning external interfaces not under project control. Explain any details
about requirements counting methods used in each submission in each associated
Software Product Development Report Data Dictionary.

2. Number of External Interface Requirements
This is the number of external interface requirements not under project control

that the developed system must satisfy. External interfaces include interfaces to computer
systems, databases, files, or hardware devices with which the developed system must
interact but which are defined externally to the subject system. In the initial reports,
provide estimates of the total number of interface requirements to be handled by the

June 25, 2001

Appendix 2
Page7

software to be developed. If the developed system interfaces with an external system in
multiple ways (such as for reading data and also for writing data) then each unique
requirement for interaction should be counted as an interface requirement. In the final
submission of the SPDR, provide the actual number of interface requirements handled by
the developed software using, if possible, the same counting method as was used in the
initial reports. Explain any details about requirements counting methods used in each
submission in each associated Software Product Development Report Data Dictionary.

3. Code Size Measures
Item 3 indicates the code size measure used in items 4 through 6. A measure other

than those listed may be indicated if none of those shown are applicable. The preferred
size measures are total physical source lines of code or carriage returns (to be indicated
below by “S”), noncommented and nonblank source lines of code (to be indicated by
“Snc”), or number of logical source statements (to be indicated by “LS”). If another size
measure is being used, provide an abbreviation for it and briefly explain it. For example,
unadjusted function points, adjusted function points, object points, feature points, classes,
algorithms, or other functional measures could be indicated. Use the Software Product
Development Report Data Dictionary if more than a few-word explanation is necessary.

The size measure chosen should allow independent verification of the project size
by examining the software products produced by the development. For this reason, one of
the source code counting methods is preferred as a size measure, where “code” can refer
to any hand-edited product such as lines of a computer language or lines in tables used to
configure a reusable product. Many models normalize to SLOC, which is a convenient
common denominator for describing product size, even if the initial planning is done
using another measure, such as function points, objects, classes, screens, algorithms, etc.
However, developed code size may be expressed in other terms if SLOC is a meaningless
measure of the output for the majority of the programmer effort (such as when
developing a web page using an iconographic publishing tool interface).

The size measure used should be in accordance with the approved Software
Measurement Plan, which is developed by the Cost WIPT.

The next three items are intended to capture the size of the system under
development by partitioning (exhaustive with no overlaps) the code into three categories.
(Any tailoring of this form should maintain a partitioning categorization.) The
configuration control system is assumed to be the repository for completed code. (Unless
otherwise explained in the associated SPDR Data Dictionary, code that is developed but
not maintained under a configuration control system is not to be considered part of the
developed system.) Only the most recent version of each code unit should be counted.
For each of the next three items, indicate the size measure used by inserting an
abbreviation from item 3, including any user-provided abbreviations, in the blank
provided.

4. New Code
Most software projects utilize a combination of new, reused, and generated code

to accomplish the required function. Any code that was developed specifically for this
project, or was reused or generated by tools but then extensively modified (more than
25% of the lines), is considered new code.

June 25, 2001

Appendix 2
Page8

Code generator inputs prepared by hand, such as tables or scripts, are counted as
new code. Any generated code, however, is counted as reused code (if it is used verbatim
and without changes) or as modified code (if it is subsequently modified).

5. Modified Code
Source code that was generated by tools or obtained from outside the project

(even if within the same organization) and was then reused with minor modifications
(less than 25% modified) by this project is reported under item 5. If modifications were
substantial (more than a notional 25%), the code is counted as new (item 4.)

6. Reused Code
Source code that was obtained from outside the project (even if within the same

organization) or that was generated by tools and not modified at all is reported under
item 6.

INSTRUCTIONS FOR PAGE TWO

Page two of the SPDR is entitled Project Resources, Schedule and Quality, and is
a continuation of the three parts of the form on page one. It has two parts as described
below.

Part 4. Resource and Schedule Reporting

Project development is typically broken down into phases or activities. This form
can be tailored to include the names of the phases or activities that are appropriate for the
subject development.

1 - 6. Software Development Activities
Items 1 through 6 under Part 4 are taken from the activity definitions used in

ISO12207 and are intended to be generic to any software development (though they may
not be strictly associated with development phases by the same names). These activities
may be performed simultaneously, sequentially, or both. The two initial reports (by the
program office at the time of the CARD submission and by the contractor at Contract
Award) include estimates of the schedule and total effort applied to each activity. The
Contract End report contains actual schedules and total efforts for each activity. Many of
the activities will overlap, even in a waterfall style of development. In an iterative or
spiral development, activities may start and stop. To the extent that is sensible for the
approach used (or expected), the dates are the earliest and latest that each activity
occurred (or is estimated to occur). Month numbers, starting with month 1 at the time of
Contract Award, are shown in the first two columns.

7. Other Direct Software Engineering Development Effort
Item 7 is for any direct project hours that are not accounted for in the previous six

items. (No schedule is requested for item 7.) In the text space provided, summarize the
kinds of activities included, such as project management, IV&V, configuration

June 25, 2001

Appendix 2
Page9

management, quality control, problem resolution, library management, process
improvement, measurement, training, documentation, data conversion, or supporting a
customer-run acceptance test. Also include software delivery, installation, deployment
and/or implementation, to the extent these activities are included in the development
contract. If allocated direct charges are applied to a project, they should be included in
this item.

The contribution of any indirect hours is described in the comment block or in the
Software Product Development Report Data Dictionary (e.g., training, process
improvement, methodology research) but not included in these totals.

Part 5. Product Quality Reporting

Desired quality is to be reported on the program office initial (CARD) report.
Actual quality of the delivered system is to be reported on the Contract or Release End
report. No reporting of estimated quality is expected for the Contract Award or Release
Start report. The Sample SPDR shows a method for quantifying quality operationally
(through failure rate and defect discovery rate). However, other methods may be used if
appropriately explained in the associated SPDR Data Dictionary.

1a. Required Mean Time to Defect (MTTD) at delivery
The required MTTD at time of delivery is one method by which the customer can

specify product quality. In using this measure, care must be taken to define whether
minor or only major (mission compromising) defects would be counted, and whether a
known defects or only new ones would be counted in this measure. Also, the operational
time basis must be clarified, such as when a system is only operational eight hours a day
or when a system is operating in multiple instances at different locations simultaneously.
Use the associated SPDR Data Dictionary to clarify the counting method.

1b. Comparison with Analogous Systems
Alternatively, provide some measure that compares the required reliability of this

system with the nominal reliability for systems of this type. For example, if the system is
an operational flight program (see Part 2, item 1), higher than nominal reliability might
be expected if the OFP is for a stealth aircraft that cannot use radar or other means to
serve as a backup to the pilot. On the other hand, if the OFP were to control a pilotless
vehicle, such as a surveillance or drone aircraft, the required reliability might be lower
than nominal among other OFP systems. A tailoring of this item could allow the response
to be in terms relative to other similar systems, for example a scale such as “much
higher,” “somewhat higher,” “nominal,” “lower,” or “much lower” might be appropriate.
As with any tailoring, the explanation of the data must be included in the Software
Product Development Report Data Dictionary.

2. & 3. Cumulative Critical and Serious, and Total Defects Discovered
At Contract End, an actual measure of software quality is to be reported. The

Sample SPDR includes items 2 and 3 to report critical and serious defects, and total
defects discovered. Critical defects are classified as priority 1 (the highest priority) and

June 25, 2001

Appendix 2
Page10

affect safety or prevent meeting a critical mission requirement. Serious defects are
classified as priority 2 and adversely affect mission accomplishment and have no known
workaround. The Sample SPDR reports the sum of these two categories in item 2. The
count of total defects includes critical and serious defects plus all other defect categories,
including minor and cosmetic defects. The Sample SPDR reports the total count across
all categories in item 3. (An example of five defect categories can be found in the
superseded MIL-STD-498. Developers should tailor this to conform to their existing
definitions. Developers should also use existing procedures for distinguishing defects
from routine development changes, such as problems found after an inspection, after a
configuration control baseline, or after advancement to the next state of a development
process.)

Items 2 and 3 include two columns for reporting the cumulative critical defect
counts at the end of software qualification test and at the end of the complete
developmental test and evaluation period (just prior to acceptance and delivery). If other
names are used to define two points at the end of the project for which defect totals can
be provided, the form should be tailored to use those terms and the Software Product
Development Report Data Dictionary should explain their meaning. Item 2 asks for the
counts of critical plus serious defects at each of these two points in the project (see the
foregoing discussion for definitions of defect severities). Item 3 asks for the number of all
defects in all categories, including minor and cosmetic defects. Do not include problem
reports that are actually suggestions for additional features or functionality. Use the
SPDR Data Dictionary to document further details of the counting rules used, such as
how to count defects that are handled by deferring requirements to later releases.

4. & 5. Cumulative Critical and Serious, and Total Defects Discovered
Items 4 and 5 show the date at the end of the Software Qualification Test and at

the end of Developmental Test and Evaluation (through which the defect counts were
taken).

Filename and Revision Date of Applicable Software Product Development Report
Data Dictionary

The definitions of any tailored item or any other clarifying definitions of metrics
reported on a submitted SPDR should be contained within a Software Product
Development Report Data Definition document. Submitters are encouraged to submit
both the SPDR and the Software Product Development Report Data Definition as
electronic files. The name of the file containing the data definitions should be indicated
here.

Point of Contact and Sign Off
The form concludes with a sign-off line for the name, phone, and e-mail of the

contact person to handle any inquiries about the data submitted, plus the date of
completion (which is probably later than the as-of date in part 1).

June 25, 2001

Appendix 2
Page11

Application Types

Use the following domain names (mission and function areas) in Section 2 of the
SPDR to specify the application type(s) for the software system under development. If
none of these domain areas are applicable, enter a phrase that describes the application
type and define it in the associated SPDR Data Dictionary. The following list contains
descriptions of overlapping areas; it is not an attempt to partition the possible domain
space. Therefore, it is preferable to identify sufficiently general domains so that a large
list of application types is not necessary to describe the complete system under
development.

Warfare Mission Areas

Antiair Warfare
Antisubmarine Warfare
Naval Antisurface Ship Warfare
Amphibious Warfare
Chemical Warfare
Biological and Radiological Defense
Land Warfare
Special Warfare
Strategic Warfare
Tactical Air Warfare
Electronic Warfare
Strategic Defense Initiative

Mobility Mission Areas

Air Mobility
Land Mobility
Sea-Surface Mobility
Undersea Mobility
Space Mobility

Communications, Command & Control/Intelligence Mission Areas

Communications, command & Control
Intelligence, including Reconnaissance

Mine and Obstacle Mission Areas

Land Mine/Obstacle/Countermeasures
Sea Mine/Countermine

Mission and System Support Mission Areas

June 25, 2001

Appendix 2
Page12

Logistics
Manpower, Personnel and Training
Mission/System Support

Weapon Systems Functions

Target Acquisition/Search/Detect
Threat Evaluation
Target Tracking
Weapon Assignment
Fire Control Acquisition and Designation
Launch
Propulsion
Control
Conventional munitions/Weapons
Directed Energy Weapons
Hard Target Kill/Anti-Armor
Fuzing
Chemical Warfare (Offense)

Defensive Systems Functions

Hit Avoidance
Signature Control/Suppression Reduction
Armor, Infantry and Crew Protection
EMP Hardening/Survivability from Nuclear Weapons
Damage Control
Chemical/Biological Defense
Deterrence

Mine Functions

Mine Mooring
Mine Neutralization/Destruction

C3I Functions

Information Management
Communication
Guidance/Navigation/Position Location
Avionics/Vetronics/Display Systems

Electronic Warfare Functions

Electronic Countermeasures
Jamming

June 25, 2001

Appendix 2
Page13

Deception
Cryptography
Electronic Counter Countermeasures
Low Probability
Electromagnetic Signal Measurement/Intelligence
Jam Resistance

Assessment/Analysis Functions

Simulation
Weapons and Munitions Effects/Target Kill Assessment
Vulnerability Analysis

RDT&E Functions

Energetic Materials
Manufacturing Technology
Electronics
Other than Electronics
Materials Development
Metals, Ceramics, Organics and Composites
Electronics
Test Equipment/Technology
Structural
Electronics
Reliability
Maintainability
Structures, including Design and Manufacture
Missile
Aircraft
Hull
Body/Chassis

Miscellaneous Functions

Multi-Function Applications
Robotics
Human Factors/human Engineering
Artificial Intelligence/Adaptive Systems
Basic Scientific Research/University Interactions

Supply/Support/Construction Functions

Material Distribution and Payload Handling/Supply Systems
Training
Field Services (Water, Food, Tents, etc.)

June 25, 2001

Appendix 2
Page14

Bridging/Obstacles
Support and Auxiliary Equipment
Habitability
Environmental Effects
Facility Construction

Management/Personnel Functions

RDT&E Management
Acquisition Management
Financial Management
Medical/Casualty Care
Performance Appraisal

Other Embedded Functional Areas

Avionics
Audio signal processing and enhancement
Command and Control
Command, Control and Information
Command, Control, Communications and Information
Command, Control, Communications, Computers and Information
Digital Signal Processing
Guidance and control
Image processing and enhancement
Operational Flight Program
Simulation
Telemetry
Target seeking
Embedded trainer software
Embedded Weapon

Other Software System Functions

Decision Support
Financial, Accounting, Bookkeeping, Payroll, etc.
Information System
Management Information System
Personnel, Human Resources, etc.
Operating System
Online training or education software

