

A Practical Systems Engineering Measurement Model

Lockheed Martin

Naval Electronics & Surveillance Systems – Syracuse (NE&SS-Syracuse)

Carl Newman A. J. Nahow Greg O'Neill

Lockheed Martin NE&SS-Syracuse

Agenda

- Our History
- Introduction
- The Modeling Process
- Measures
 - Base
 - Categorizing
 - Measured
 - Derived
- Data Collection
- Implementation
- Mock Results
- Future Efforts
- Summary

NE&SS-Syracuse Engineering Excellence

- Over 12 years of formal continuous engineering process improvement
 - First SEI CMM credentials established in 1993
 - SECM Level 3+ achieved 1999
 - SEI CMM Level 5 achieved in1999
 - Currently performing a CMMI Assessment
- Over 10 years of active participation in LM Engineering Process Improvement Center (EPI Program)
- Embraced philosophy of LM-Integrated Engineering Process
- LM-21 best practices
 - Booz-Allen Hamilton "Best in Class" benchmark and best practices transfer (Requirements Generation, Verification & Management, Design Re-Use, ...)
 - Six Sigma/SPC, Lean, EXCEL teams
- Management commitment and support
 - Management is convinced that improved processes result in significant and quantifiable cost savings and product quality
 - Significant investment is made each year to maintain and improve processes

Demonstrated Commitment to Engineering Process Improvement.

Measurement is a journey, not a destination

Lockheed Martin NE&SS-Syracuse

Introduction

- Dilemma
 - Proposal costing and quoting of System Engineering (SE) relied too heavily on individual experience and hence suffered from inherent subjectivity

• Vision

- To establish a model based on historical performance supporting objective proposal costing and quoting.
- The model should be able to answer questions such as
 - How much labor is required to produce a System Requirement Specification (SRS)?
 - How much labor is required per requirement to produce a SRS?
 - What trends exist regarding the development of SE products?

The Modeling Process

- Identify the products (e.g. SRSs, etc) to model
- Define base measures to collect
 - Categorize data (e.g. business, program)
 - Measure data (e.g. number of requirements, number of pages)
- Define derived measures to produce
- Collect historical program data
- Implementation
- Use

Remember to use PSM/GQM etc to select measures

Base Measures: Categorizing Data

Category	Description
Product	SRS, Operational Concept, Interface Control Document, etc.
Product Type	A second level of product description (e.g. Display, Signal Processing)
Business Area	The line of businss (e.g. Ocean, Radar)
Program	The specific program
Discipline	Systems, Software, Hardware, Integration & Test
Cost Account ID	A unique cost tracking identifier

Strongly typed category fields support dynamic ad hoc queries

Base Measures: Measured Data

Field	Definition
Person Days	The amount of labor required to produce a product
Complexity	1 (low) to 5 (high) - Assigned by product owner
# of Reqts.	The total number of requirements for this product (as applicable)
% New Reqts.	Of the total requirements, what % are brand new (vs.reused)
# of Pages	The total number of pages in document products

Measures obtained from source tools and product owners

Derived Measures

- Primary
 - Labor required to create SE product(s)
 - SRSs by type
 - Operational Concepts
 - Etc.
 - Labor required to develop a requirement per SE product type
- Auxiliary
 - Distribution of labor between disciplines
 - In person-days
 - As a percentage
 - Distribution of labor between SE products
 - In person-days and as percentages
 - SE product size measures
 - Etc.

The model provides useful product performance measures

Data Collection

- Data initially collected from
 - 2 lines of business
 - 14 programs
 - 7 "disciplines"
 - 14 product types
 - Many product subtypes
- Base measures obtained from
 - Cost accounting system
 - Requirements tracking systems
 - Configuration Management systems
 - Product owners
- Obtaining historical data was challenging since some cost structures were not established with product level measures in mind
 - Cost accounts should be created for each individual product

Ensure infrastructures support collection of the natural measures

Implementation

- MS-Excel was selected for the initial model
 - It provides easy interrogation and ad hoc querying
 - It allows for easy migration to a relational DB in the future
- Architecture
 - A spreadsheet database
 - Strongly typed fields
 - Additional text description fields
- How the model works...
 - Filters are used on the category fields to query appropriate products
 - Program
 - Product type
 - Discipline, etc
 - This allows users to view measures for a program, set of products, individual products or any combination.
 - Once filtered, the complete set of derived measures (including standard deviations) are automatically provided

Historical performance measures enabled with fast, intuitive and dynamic searches

Mock Results

- Possible results for Control SRSs from the Ocean business
 - All Numbers, Descriptions, and Program Names have been changed to protect proprietary information

Empirical data has demonstrated the model to be very accurate

Future Efforts

- Continue to populate the database
 - A larger database population will reduce the effects of statistical outliers, and increase the overall accuracy of the model
 - Complete data update for active programs and add new programs as necessary.
- Formalize Database
 - Evaluate available databases which provide best migration from existing DB structure
- Further statistical analysis of current data
 - Perform regression analysis to determine how much variance is described by model
 - Improve query and analysis techniques
- Increase the number of descriptive fields which allows for greater accuracy when estimating products
 - Leverage parameters from COSYSMO
 - Examples:
 - Number of Interfaces
 - Duration
 - Experience
 - Specific Product Experience
 - Team Size

Summary

- The model provides a historical database to satisfy measurement needs
 - Provides framework for improving accuracy of quotes
 - Quantitative data available as an alternate "Check & Balance"
 - Provides means to add new programs and update active programs
 - Provides a future path consistent with the System Engineering vision

Even in the development stage, the model is very useful