

### **Estimating System-of-System Architecture Definition and Integration Effort**

COSOSIMO

Jo Ann Lane *University of Southern California Center for Software Engineering* 

PSM July 2004

# **Goals of This Presentation**

- Provide an overview of
  - System-of-system concepts
  - The desired system-of-system activities to be covered by the cost model
  - The cost model approaches, concepts, and definitions
  - Current issues/questions under investigation
- Present an example using current investigational version of cost model
- Solicit data for further model investigations and calibration
- Obtain feedback/suggestions on approach and data collection

## System of Systems (SoS) Concept



### **High Level Partitioning of Cost Models**



### Constructive System-of-System Integration Cost Model (COSOSIMO)

- Parametric model to estimate the effort associated with the definition and integration of softwareintensive "system of systems" components
- Includes at least one size driver and 6 exponential scale factors related to effort
- Targets input parameters that can be determined in early phases
- Goal is to have zero overlap with COCOMO II and COSYSMO

### **Key Activities Covered by Each Cost Model**

### COSOSIMO

- SoS architecture definition
- SoS integration activities
  - Development of SoS integration lab
  - Development of SoS level test plans and procedures
  - Execution of test SoS test procedures
  - High-level isolation of problems detected during integration

### COSYSMO

- System/sub-system
   definition
  - Operational concepts
  - Operational scenarios
- System/sub-system
   elaboration
- System integration and test
- Resolution of systemlevel errors detected during test activities
- Deployment
- Maintenance

### COCOMO II

- Application and system software development
  - Elaboration
  - Construction
- Development of test tools and simulators (estimated as a separate set of software)
- Resolution of software errors detected during test activities

# **Model Differences**

#### COSOSIMO

- System of Systems architecture definition and integration
- Pre and Post COCOMO
   Il effort
- Very new
- Only expert validation
- 6 exponential scale factors
- Candidate drivers
  - Effective KSLOC (eKSLOC)
  - Logical interfaces at SoS level

### COSYSMO

- Systems engineering
- Entire life cycle
- 3 years old
- 11 calibration points
- 18 drivers
- Size is driven by
  - requirements
  - interfaces
  - algorithms
  - operational
    - scenarios

#### 

- Software development
- Development phases
- 20+ years old
- 161 calibration points
- 23 drivers
- Size is driven by effective SLOC (eSLOC)

# **COSOSIMO Operational Concept**

#### **Size Drivers**



# **COSOSIMO Model Equations**

Level 1 IPM (S<sub>i</sub>) = 
$$A_i \left( \sum_{j=1}^{n_i} \text{Size} (S_{ij}) \right)^{B_i}$$
  
Level 0 IPM (SoS) =  $A_0 \left( \sum_{i=1}^{m_i} \text{IPM} (S_i) \right)^{B_0}$ 

Two level model that

- First determines integration effort for first level subsystems....
- Then, using subsystem integration effort and SoS characteristics, determines SoS integration effort...



### **COSOSIMO Model Parameters**

- **IPM** Integration effort in Person Months
- **S**<sub>*i*</sub> The i<sup>th</sup> subsystem within the SoS
- A Constant derived from historical project data
- **Size** Determined by computing the weighted average of the size driver(s)
- **n**<sub>i</sub> Number of Subsystem level 2 components comprising the i<sup>th</sup> subsystem
- **m** Number of Subsystem level 1 components comprising the SoS
- $B_i$  Effort exponent for the  $i_{th}$  subsystem based on the subsystem's 6 exponential scale factors. The sum of the scale factors results in an overall exponential effort adjustment factor to the nominal effort.
- B<sub>0</sub> Effort exponent for the SoS based on the SOS' 6 exponential scale factors. The sum of the scale factors results in an overall exponential effort adjustment factor to the nominal effort.

# **Current Level 1 Size Driver**

- Subsystem development size measured in effective KSLOC (eKSLOC)
- eKSLOC can be calculated using COCOMO II
- Size weighted by
  - Complexity
  - Volatility
  - Degree of COTS/reuse



# **Additional Proposed Size Drivers**

- Number of major interfaces
- Number of operational scenarios





# Proposed Size Driver Definitions



#### **Subsystem Software Size**

This driver represents the software subsystem size. It is measured in terms of effective thousand lines of code (eKSLOC). eKSLOC can calculated using COCOMO II or a comparable estimation model or technique.

| Easy                        | Nominal                                       | Difficult                                                               |
|-----------------------------|-----------------------------------------------|-------------------------------------------------------------------------|
| - Simple algorithms         | - Straightforward, but non-trivial algorithms | - Complex algorithms                                                    |
| - Basic math                | - Algebraic by nature                         | - Difficult math (calculus)                                             |
| - Straightforward structure | - Nested structure with decision logic        | <ul> <li>Recursive in structure<br/>with distributed control</li> </ul> |
| - Simple data               | - Relational data                             | - Persistent data                                                       |
| - Timing not an issue       | - Timing a constraint                         | - Dynamic, with timing issues                                           |



#### **Number of Major Interfaces**

This driver represents the number of shared major physical and logical boundaries between subsystem components or functions (internal interfaces) and those external to the subsystem (external interfaces). These interfaces typically can be quantified by counting the number of interfaces identified in either the subsystem's context diagram and/or by counting the significant interfaces in all applicable Interface Control Documents.

| Easy           | Nominal                | Difficult        |
|----------------|------------------------|------------------|
| - Well defined | - Loosely defined      | - III defined    |
| - Uncoupled    | - Loosely coupled      | - Highly coupled |
| - Cohesive     | - Moderate cohesion    | - Low cohesion   |
| - Well behaved | - Predictable behavior | - Poorly behaved |

#### **Number of Operational Scenarios**

This driver represents the number of operational scenarios that a system must satisfy. Such threads typically result in end-to-end test scenarios that are developed to validate the system and satisfy all of its requirements. The number of scenarios can typically be quantified by counting the number of unique end-to-end tests used to validate the system functionality and performance or by counting the number of highlevel use cases developed as part of the operational architecture.

| Easy                     | Nominal                  | Difficult                                                                                 |
|--------------------------|--------------------------|-------------------------------------------------------------------------------------------|
| - Well defined           | - Loosely defined        | - III defined                                                                             |
| - Loosely coupled        | - Moderately coupled     | <ul> <li>Tightly coupled or many<br/>dependencies/conflicting<br/>requirements</li> </ul> |
| - Timelines not an issue | - Timelines a constraint | - Tight timelines through scenario network                                                |



## Proposed Exponential Scale Factor Definitions

#### Integration Simplicity (ISMPL)

Represents a parameter which includes system component coupling, processing criticality, scope of key performance parameters, and system precedentedness.

| Very Low                                                                                                  | Low                                          | Nominal                                                 | High                                         | Very High                               | Extra High                                                              |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| <ul> <li>Very strong<br/>coupling</li> </ul>                                                              | <ul> <li>Strong coupling</li> </ul>          | <ul> <li>Both strong &amp;<br/>weak coupling</li> </ul> | <ul> <li>Moderate<br/>coupling</li> </ul>    | <ul> <li>Weak<br/>coupling</li> </ul>   | <ul> <li>Very weak coupling</li> </ul>                                  |
| <ul> <li>Very strong<br/>criticality</li> <li>Cross-cutting key<br/>performance<br/>parameters</li> </ul> | <ul> <li>Strong criticality</li> </ul>       | <ul> <li>Mixed criticality</li> </ul>                   | <ul> <li>Moderate<br/>criticality</li> </ul> | <ul> <li>Low criticality</li> </ul>     | <ul> <li>No cross-cutting key<br/>performance<br/>parameters</li> </ul> |
| <ul> <li>Highly<br/>unprecedented</li> </ul>                                                              | <ul> <li>Mostly<br/>unprecedented</li> </ul> | <ul> <li>Partly<br/>unprecedented</li> </ul>            | <ul> <li>Some new<br/>aspects</li> </ul>     | <ul> <li>Few new<br/>aspects</li> </ul> | <ul> <li>No new aspects</li> </ul>                                      |

#### Integration Risk Resolution (IRESL)

Represents a multi-attribute parameter which includes number of integration risk items, risk management/mitigation plan, compatible schedules and budgets, expert availability, tool support, level of uncertainty in integration risk areas. IRESL is the subjective weighted average of the listed characteristics.

| Characteristic                                                                                                                           | Very Low      | Low                             | Nominal                          | High                                            | Very High                  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|----------------------------------|-------------------------------------------------|----------------------------|
| <ul> <li>Number and criticality<br/>of risk items</li> </ul>                                                                             | > 10 critical | 5-10 critical                   | <ul> <li>2-4 critical</li> </ul> | 1 critical                                      | <10 non-critical           |
| <ul> <li>Risk mitigation<br/>activities</li> </ul>                                                                                       | ■ None        | <ul> <li>Little</li> </ul>      | <ul> <li>Some</li> </ul>         | <ul> <li>Risks generally<br/>covered</li> </ul> | Risks fully covered        |
| <ul> <li>Schedule, budget, and<br/>internal milestones<br/>compatible with Risk<br/>Management Plan and<br/>integration scope</li> </ul> | ■ None        | <ul> <li>Little</li> </ul>      | ■ Some                           | <ul> <li>Generally</li> </ul>                   | <ul> <li>Mostly</li> </ul> |
| <ul> <li>% of top software<br/>system integrators<br/>available to project</li> </ul>                                                    | ■ 20%         | <b>■</b> 40%                    | <b>■</b> 60%                     | ■ 80%                                           | ■ 100%                     |
| <ul> <li>Tool support available<br/>for tracking issues</li> </ul>                                                                       | ■ None        | <ul> <li>Little</li> </ul>      | ■ Some                           | <ul> <li>Good</li> </ul>                        | Strong                     |
| <ul> <li>Level of uncertainty in<br/>integration risk area</li> </ul>                                                                    | Extreme       | <ul> <li>Significant</li> </ul> | <ul> <li>Considerable</li> </ul> | ■ Some                                          | ■ Little                   |

#### **Integration Stability (ISBLY)**

Indicates anticipated change in integration components during system of system integration activities.

| Very Low                                                         | Low                                                                 | Nominal                                                             | High                                                                | Very High                                                           | Extra High                                                  |
|------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|
| <ul> <li>10% change<br/>during integration<br/>period</li> </ul> | <ul> <li>7% change<br/>during<br/>integration<br/>period</li> </ul> | <ul> <li>4% change<br/>during<br/>integration<br/>period</li> </ul> | <ul> <li>2% change<br/>during<br/>integration<br/>period</li> </ul> | <ul> <li>1% change<br/>during<br/>integration<br/>period</li> </ul> | <ul> <li>No change during<br/>integration period</li> </ul> |

#### **Component Readiness (CREDY)**

Indicates readiness of component (sub-component) for integration. Includes level of verification and validation (V&V) that has been performed prior to integration and level of subsystem integration activities that have been performed prior to integration into the SOSIL.

| Very Low                                                            | Low                                                                    | Nominal                                                                 | High                                                                                | Very High                                                                                | Extra High                                                                       |
|---------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <ul> <li>Minimally V&amp;V'd</li> <li>No pre-integration</li> </ul> | <ul> <li>Some V&amp;V</li> <li>Minimal pre-<br/>integration</li> </ul> | <ul> <li>Moderate V&amp;V</li> <li>Some pre-<br/>integration</li> </ul> | <ul> <li>Considerable<br/>V&amp;V</li> <li>Moderate pre-<br/>integration</li> </ul> | <ul> <li>Extensive<br/>V&amp;V</li> <li>Considerable<br/>pre-<br/>integration</li> </ul> | <ul> <li>Thoroughly V&amp;V'd</li> <li>Extensive pre-<br/>integration</li> </ul> |

#### Integration Capability (ICAPY)

Represents a multi-attribute parameter which includes the integration team cooperation and cohesion, integration personnel capability and continuity, and integration personnel experience (application, language, tool, and platform). ICAPY is the subjective weighted average of the listed characteristics.

| Factor             | Very Low                                                                                         | Low                                                                                              | Nominal                                                                                     | High                                                                                    | Very High                                                                               | Extra High                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| • ITEAM<br>• IPERS | <ul> <li>Very difficult<br/>team<br/>interactions</li> <li>35<sup>th</sup> percentile</li> </ul> | <ul> <li>Some difficult<br/>team<br/>interactions</li> <li>45<sup>th</sup> percentile</li> </ul> | <ul> <li>Basically<br/>cooperative<br/>teams</li> <li>55<sup>th</sup> percentile</li> </ul> | <ul> <li>Largely<br/>cooperative<br/>teams</li> <li>65<sup>th</sup></li> </ul>          | <ul> <li>Highly<br/>cooperative<br/>teams</li> <li>75<sup>th</sup></li> </ul>           | <ul> <li>Seamless<br/>team<br/>interactions</li> <li>85<sup>th</sup></li> </ul>         |
|                    | • 30% turnover rate                                                                              | • 20% turnover rate                                                                              | • 12% turnover rate                                                                         | <ul><li>percentile</li><li>9% turnover rate</li></ul>                                   | <ul><li>percentile</li><li>6% turnover rate</li></ul>                                   | <ul><li>percentile</li><li>4% turnover rate</li></ul>                                   |
| ■ IPREX            | <ul> <li>≤ 5 months<br/>experience<br/>with app, lang,<br/>tools,<br/>platforms</li> </ul>       | <ul> <li>9 months<br/>experience<br/>with app, lang,<br/>tools,<br/>platforms</li> </ul>         | <ul> <li>1 year<br/>experience<br/>with app, lang,<br/>tools,<br/>platforms</li> </ul>      | <ul> <li>2 years<br/>experience<br/>with app,<br/>lang, tools,<br/>platforms</li> </ul> | <ul> <li>4 years<br/>experience<br/>with app,<br/>lang, tools,<br/>platforms</li> </ul> | <ul> <li>6 years<br/>experience<br/>with app,<br/>lang, tools,<br/>platforms</li> </ul> |

#### **Integration Processes (IPROC)**

Represents a parameter that rates the maturity level and completeness of an integration team's integration processes, plans, and the SOS integration lab (SOSIL). IPROC is the subjective weighted average of the listed characteristics.

| Very Low                                                                                                             | Low                                                                                                                       | Nominal                                                                                                        | High                                                                                            | Very High                                                                                                      | Extra High                                                                                         |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <ul> <li>Ad-hoc<br/>integration<br/>process</li> <li>Minimal SOSIL</li> <li>CMMI Level 1<br/>(lower half)</li> </ul> | <ul> <li>Minimal<br/>integration plans</li> <li>Immature core<br/>SOSIL</li> <li>CMMI Level 1<br/>(upper half)</li> </ul> | <ul> <li>Some<br/>integration<br/>plans</li> <li>Partly mature<br/>core SOSIL</li> <li>CMMI Level 2</li> </ul> | <ul> <li>Moderate<br/>plans</li> <li>Mature core<br/>SOSIL</li> <li>CMMI Level<br/>3</li> </ul> | <ul> <li>Considerable<br/>plans</li> <li>Partly mature<br/>extended<br/>SOSIL</li> <li>CMMI Level 4</li> </ul> | <ul> <li>Extensive plans</li> <li>Fully mature<br/>extended SOSIL</li> <li>CMMI Level 5</li> </ul> |



## **Current Issues**

## Issues and Questions Currently Under Investigation

- What is the best size driver
- If software size used
  - Should it be limited to the software performing interface operations
  - How should COTS product interfaces be accounted for
- If number of logical interfaces is used
  - Which ones to include
  - What level to count
  - How to specify complexities associated with various interfaces
- Do user scenarios and user interfaces capture additional size information needed to better estimate level of effort
- If multiple size drivers used, what is the relative weight of each
- Model outputs
  - Desired granularity of effort estimates
  - Associated schedule?

## Issues and Questions Currently Under Investigation (continued)

- How to ensure no overlap with COSYSMO or COCOMO II models
- Are current scale factors
  - Relevant
  - Sufficient
- Are current scale factor values/range of values appropriate
- How well do the various model variations track with respect to
  - Expert judgment
  - Actual experiences/projects



## SOS Estimation Example Using Only Software Size as the Size Driver

### Hazardous Materials Response System of Systems

# System of System Architecture Example



## SOS Integration Calculations with Nominal Level 1 and Level 0 Drivers

| Level 0                                                                                                     | ISMPL                                                        | IRESL                                        | ISBLY                                        | CREDY                                                           | ICAPY | IPROC | B0    |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|-------|-------|-------|
| SOS                                                                                                         | 0.000                                                        | 0.000                                        | 0.000                                        | 0.000                                                           | 0.000 | 0.000 | 1.030 |
|                                                                                                             |                                                              |                                              |                                              |                                                                 |       |       |       |
| Level 1                                                                                                     | ISMPL                                                        | IRESL                                        | ISBLY                                        | CREDY                                                           | ICAPY | IPROC | Bi    |
| Command and Control                                                                                         | 0.000                                                        | 0.000                                        | 0.000                                        | 0.000                                                           | 0.000 | 0.000 | 1.040 |
| Network Comms                                                                                               | 0.000                                                        | 0.000                                        | 0.000                                        | 0.000                                                           | 0.000 | 0.000 | 1.040 |
| Sensor Data Processing                                                                                      | 0.000                                                        | 0.000                                        | 0.000                                        | 0.000                                                           | 0.000 | 0.000 | 1.040 |
| HazMat Material Identification                                                                              | 0.000                                                        | 0.000                                        | 0.000                                        | 0.000                                                           | 0.000 | 0.000 | 1.040 |
|                                                                                                             |                                                              |                                              |                                              |                                                                 |       |       |       |
|                                                                                                             |                                                              |                                              |                                              |                                                                 |       |       |       |
|                                                                                                             |                                                              |                                              |                                              |                                                                 |       |       |       |
|                                                                                                             |                                                              |                                              |                                              |                                                                 |       |       |       |
| Level 1                                                                                                     | eKSLOC                                                       | A1                                           | Bi                                           | IPMi                                                            |       |       |       |
| Command and Control                                                                                         | <b>eKSLOC</b><br>3000                                        | <b>A1</b><br>1.000                           | <b>Bi</b><br>1.040                           | IPMi<br>4132.436                                                |       |       |       |
| Level 1<br>Command and Control<br>Network Comms                                                             | <b>eKSLOC</b><br>3000<br>800                                 | A1<br>1.000<br>1.000                         | Bi<br>1.040<br>1.040                         | IPMi<br>4132.436<br>1045.234                                    |       |       |       |
| Level 1<br>Command and Control<br>Network Comms<br>Sensor Data Processing                                   | <b>eKSLOC</b><br>3000<br>800<br>600                          | A1<br>1.000<br>1.000<br>1.000                | Bi<br>1.040<br>1.040<br>1.040                | IPMi<br>4132.436<br>1045.234<br>774.956                         |       |       |       |
| Level 1<br>Command and Control<br>Network Comms<br>Sensor Data Processing<br>HazMat Material Identification | <b>eKSLOC</b><br>3000<br>800<br>600<br>900                   | A1<br>1.000<br>1.000<br>1.000<br>1.000       | Bi<br>1.040<br>1.040<br>1.040<br>1.040       | IPMi<br>4132.436<br>1045.234<br>774.956<br>1181.441             |       |       |       |
| Level 1<br>Command and Control<br>Network Comms<br>Sensor Data Processing<br>HazMat Material Identification | <b>eKSLOC</b><br>3000<br>800<br>600<br>900                   | A1<br>1.000<br>1.000<br>1.000<br>1.000       | Bi<br>1.040<br>1.040<br>1.040<br>1.040       | IPMi<br>4132.436<br>1045.234<br>774.956<br>1181.441             |       |       |       |
| Level 1<br>Command and Control<br>Network Comms<br>Sensor Data Processing<br>HazMat Material Identification | eKSLOC<br>3000<br>800<br>600<br>900<br>Level 1               | A1<br>1.000<br>1.000<br>1.000<br>1.000       | Bi<br>1.040<br>1.040<br>1.040<br>1.040       | IPMi<br>4132.436<br>1045.234<br>774.956<br>1181.441             |       |       |       |
| Level 1<br>Command and Control<br>Network Comms<br>Sensor Data Processing<br>HazMat Material Identification | eKSLOC<br>3000<br>800<br>600<br>900<br>Level 1<br>Effort Sum | A1<br>1.000<br>1.000<br>1.000<br>1.000<br>A0 | Bi<br>1.040<br>1.040<br>1.040<br>1.040<br>B0 | IPMi<br>4132.436<br>1045.234<br>774.956<br>1181.441<br>IPM(SOS) |       |       |       |

Total SOS Integration Effort: ~9310 Person Months or 775.8 Person Years

PSM July 2004

### **Potential Range of Values for Example**

| Case    | Person<br>Months | % of Total<br>Estimated Nominal<br>Development Effort |
|---------|------------------|-------------------------------------------------------|
| Nominal | 9310             | 29%                                                   |
| Best    | 6477             | 20%                                                   |
| Worst   | 11907            | 37%                                                   |

## Parametric Cost Model Critical Path Tasks and Status



**Converge on preliminary cost drivers,** WBS

Converge on detailed definitions and rating scales

**Obtain initial exploratory dataset** 

Refine model based on data collection and analysis experience

**Obtain IOC calibration dataset** 

**Refine IOC model and tool** 

### **Upcoming Calendar of Events: 2004/2005**



**Proposed First Working Group Meeting** 



# **Next Steps**

- Refine the model based on delphi inputs and actual data
- Working group meeting at October 2004 COCOMO II Workshop



# **Questions or Comments?**

- Jo Ann Lane
  - jalane@tns.net
- Websites
  - http://cse.usc.edu

(COSOSIMO web site coming soon...)

- Books
  - Boehm, B., et al, Software Cost Estimation with COCOMOII, 1st Ed, Prentice Hall, 2000
  - Boehm, B., Software Engineering Economics, 1st Ed, Prentice Hall, 1981
- Articles
  - Boehm, B., et al., *Future Trends, Implications in Cost Estimation Models*, CrossTalk April 2000.
  - Gilligan, John M., *Department of the Air Force, Military-Use* Software: Challenges and Opportunities, CrossTalk, January 2004.