
USC

C S E University of Southern California
Center for Software Engineering

PSM July 2004

COSOSIMO

Estimating System-of-System
Architecture Definition and Integration Effort

Jo Ann Lane
University of Southern California
Center for Software Engineering

PSM July 2004 2

USC

C S E University of Southern California
Center for Software Engineering

Goals of This Presentation
• Provide an overview of

– System-of-system concepts
– The desired system-of-system activities to be covered

by the cost model
– The cost model approaches, concepts, and definitions
– Current issues/questions under investigation

• Present an example using current investigational
version of cost model

• Solicit data for further model investigations and
calibration

• Obtain feedback/suggestions on approach and data
collection

PSM July 2004 3

USC

C S E University of Southern California
Center for Software Engineering

System of Systems (SoS) Concept

SOS

SmS2S1

S11 S12 S1n S21 S22 S2n Sm1 Sm2 Smn

……

…… …… ……

PSM July 2004 4

USC

C S E University of Southern California
Center for Software Engineering

High Level Partitioning of Cost Models

Requirements
Analysis

Preliminary
Design

Detailed
Design

Coding

Unit Test

Integration

Software
Acceptance Test

Legend
COCOMO
COSYSMO
COSOSIMO

SOS

System
System

Integration/Test

System of System

Software
Architecting

Architecting
COSOSIMO

COSYSMO

COCOMO II

Integration/Test

PSM July 2004 5

USC

C S E University of Southern California
Center for Software Engineering

Constructive System-of-System
Integration Cost Model (COSOSIMO)

• Parametric model to estimate the effort associated
with the definition and integration of software-
intensive “system of systems” components

• Includes at least one size driver and 6 exponential
scale factors related to effort

• Targets input parameters that can be determined in
early phases

• Goal is to have zero overlap with COCOMO II and
COSYSMO

PSM July 2004 6

USC

C S E University of Southern California
Center for Software Engineering

Key Activities Covered by Each Cost Model

COCOMO II
• Application and

system software
development

• Elaboration
• Construction

• Development of test
tools and simulators
(estimated as a
separate set of
software)

• Resolution of
software errors
detected during test
activities

COSYSMO
• System/sub-system

definition
• Operational concepts
• Operational scenarios

• System/sub-system
elaboration

• System integration
and test

• Resolution of system-
level errors detected
during test activities

• Deployment
• Maintenance

COSOSIMO
• SoS architecture
definition

• SoS integration
activities

• Development of SoS
integration lab

• Development of SoS
level test plans and
procedures

• Execution of test SoS
test procedures

• High-level isolation of
problems detected
during integration

PSM July 2004 7

USC

C S E University of Southern California
Center for Software Engineering

Model Differences
COCOMO II

• Software
development

• Development
phases

• 20+ years old
• 161 calibration

points
• 23 drivers
• Size is driven by

effective SLOC
(eSLOC)

COSOSIMO
• System of Systems

architecture definition
and integration

• Pre and Post COCOMO
II effort

• Very new
• Only expert validation
• 6 exponential scale

factors
• Candidate drivers

– Effective KSLOC
(eKSLOC)

– Logical interfaces at
SoS level

COSYSMO
• Systems engineering
• Entire life cycle
• 3 years old
• 11 calibration points
• 18 drivers
• Size is driven by

– requirements
– interfaces
– algorithms
– operational

scenarios

PSM July 2004 8

USC

C S E University of Southern California
Center for Software Engineering

Size Drivers

Exponential Scale Factors
SoS
Definition and
Integration
Effort

Calibration

• Interface-related eKSLOC
• Number of logical

interfaces at SoS level

• Integration simplicity
• Integration risk resolution
• Integration stability
• Component readiness
• Integration capability
• Integration processes

COSOSIMO Operational Concept

COSOSIMO

PSM July 2004 9

USC

C S E University of Southern California
Center for Software Engineering

COSOSIMO Model Equations

Level 1 IPM (Si) = Ai ∑ Size (Sij)
Bi

j=1

ni

Level 0 IPM (SoS) = A0 ∑ IPM (Si)
B0

i=1

mi

Two level model that
• First determines integration effort
 for first level subsystems….
• Then, using subsystem integration
 effort and SoS characteristics,
 determines SoS integration effort…

SOS

SmS2S1

S11 S12 S1n S21 S22 S2n Sm1 Sm2 Smn

……

…… …… ……

Level 0

Level 1

PSM July 2004 10

USC

C S E University of Southern California
Center for Software Engineering

COSOSIMO Model Parameters

IPM Integration effort in Person Months
Si The ith subsystem within the SoS
A Constant derived from historical project data
Size Determined by computing the weighted average of the size driver(s)
ni Number of Subsystem level 2 components comprising the ith

subsystem
m Number of Subsystem level 1 components comprising the SoS
Bi Effort exponent for the ith subsystem based on the subsystem’s 6

exponential scale factors. The sum of the scale factors results in an
overall exponential effort adjustment factor to the nominal effort.

B0 Effort exponent for the SoS based on the SOS’ 6 exponential scale
factors. The sum of the scale factors results in an overall exponential
effort adjustment factor to the nominal effort.

PSM July 2004 11

USC

C S E University of Southern California
Center for Software Engineering

Current Level 1 Size Driver
• Subsystem development size measured

in effective KSLOC (eKSLOC)
• eKSLOC can be calculated using

COCOMO II
• Size weighted by

– Complexity
– Volatility
– Degree of COTS/reuse

S1
S2

S3

S4

PSM July 2004 12

USC

C S E University of Southern California
Center for Software Engineering

Additional Proposed Size Drivers
• Number of major interfaces
• Number of operational scenarios

S1

S2

S3

S4
Each weighted by

• Complexity
• Volatility
• Degree of COTS/reuse

PSM July 2004 13

USC

C S E University of Southern California
Center for Software Engineering

Proposed
Size Driver
Definitions

PSM July 2004 14

USC

C S E University of Southern California
Center for Software Engineering

Subsystem Software Size
This driver represents the software subsystem size. It is measured in terms of
effective thousand lines of code (eKSLOC). eKSLOC can calculated using
COCOMO II or a comparable estimation model or technique.

- Dynamic, with timing issues- Timing a constraint- Timing not an issue

- Persistent data- Relational data- Simple data

- Recursive in structure
with distributed control

- Nested structure with decision
logic

- Straightforward structure

- Difficult math (calculus)- Algebraic by nature- Basic math

- Complex algorithms - Straightforward, but non-trivial
algorithms

- Simple algorithms

DifficultNominalEasy

PSM July 2004 15

USC

C S E University of Southern California
Center for Software Engineering

Number of Major Interfaces
This driver represents the number of shared major physical and logical boundaries
between subsystem components or functions (internal interfaces) and those
external to the subsystem (external interfaces). These interfaces typically can be
quantified by counting the number of interfaces identified in either the subsystem’s
context diagram and/or by counting the significant interfaces in all applicable
Interface Control Documents.

- Poorly behaved- Predictable behavior- Well behaved

- Low cohesion- Moderate cohesion- Cohesive

- Highly coupled- Loosely coupled- Uncoupled

- Ill defined- Loosely defined- Well defined

DifficultNominalEasy

PSM July 2004 16

USC

C S E University of Southern California
Center for Software Engineering

Number of Operational Scenarios
This driver represents the number of operational scenarios that a system must
satisfy. Such threads typically result in end-to-end test scenarios that are developed
to validate the system and satisfy all of its requirements. The number of scenarios
can typically be quantified by counting the number of unique end-to-end tests used to
validate the system functionality and performance or by counting the number of high-
level use cases developed as part of the operational architecture.

- Tight timelines through
scenario network

- Timelines a constraint- Timelines not an issue

- Tightly coupled or many
dependencies/conflicting
requirements

- Moderately coupled- Loosely coupled

- Ill defined- Loosely defined- Well defined

DifficultNominalEasy

PSM July 2004 17

USC

C S E University of Southern California
Center for Software Engineering

Proposed
Exponential Scale Factor

Definitions

PSM July 2004 18

USC

C S E University of Southern California
Center for Software Engineering

Integration Simplicity (ISMPL)
Represents a parameter which includes system component coupling, processing
criticality, scope of key performance parameters, and system precedentedness.

Very strong
coupling
Very strong
criticality
Cross-cutting key
performance
parameters
Highly
unprecedented

Very Low

Very weak coupling

No cross-cutting key
performance
parameters

No new aspects

Weak
coupling
Low criticality

Few new
aspects

Moderate
coupling
Moderate
criticality

Some new
aspects

Both strong &
weak coupling
Mixed criticality

Partly
unprecedented

Strong coupling

Strong criticality

Mostly
unprecedented

Extra HighVery HighHighNominalLow

PSM July 2004 19

USC

C S E University of Southern California
Center for Software Engineering

Integration Risk Resolution (IRESL)
Represents a multi-attribute parameter which includes number of integration risk
items, risk management/mitigation plan, compatible schedules and budgets, expert
availability, tool support, level of uncertainty in integration risk areas. IRESL is the
subjective weighted average of the listed characteristics.

Number and criticality
of risk items
Risk mitigation
activities
Schedule, budget, and
internal milestones
compatible with Risk
Management Plan and
integration scope
% of top software
system integrators
available to project
Tool support available
for tracking issues
Level of uncertainty in
integration risk area

Characteristic

<10 non-critical

Risks fully covered

Mostly

100%

Strong

Little

1 critical

Risks generally
covered
Generally

80%

Good

Some

2-4 critical

Some

Some

60%

Some

Considerable

5-10 critical

Little

Little

40%

Little

Significant

> 10 critical

None

None

20%

None

Extreme

Very HighHighNominalLowVery Low

PSM July 2004 20

USC

C S E University of Southern California
Center for Software Engineering

Integration Stability (ISBLY)
Indicates anticipated change in integration components during system of system
integration activities.

10% change
during integration
period

Very Low

No change during
integration period

1% change
during
integration
period

2% change
during
integration
period

4% change
during
integration
period

7% change
during
integration
period

Extra HighVery HighHighNominalLow

PSM July 2004 21

USC

C S E University of Southern California
Center for Software Engineering

Component Readiness (CREDY)
Indicates readiness of component (sub-component) for integration. Includes level
of verification and validation (V&V) that has been performed prior to integration and
level of subsystem integration activities that have been performed prior to
integration into the SOSIL.

Minimally V&V’d
No pre-integration

Very Low

Thoroughly V&V’d
Extensive pre-
integration

Extensive
V&V
Considerable
pre-
integration

Considerable
V&V
Moderate pre-
integration

Moderate V&V
Some pre-
integration

Some V&V
Minimal pre-
integration

Extra HighVery HighHighNominalLow

PSM July 2004 22

USC

C S E University of Southern California
Center for Software Engineering

Integration Capability (ICAPY)
Represents a multi-attribute parameter which includes the integration team
cooperation and cohesion, integration personnel capability and continuity, and
integration personnel experience (application, language, tool, and platform). ICAPY
is the subjective weighted average of the listed characteristics.

ITEAM

IPERS

IPREX

Factor

• Very difficult
team
interactions

• 35th percentile
• 30% turnover

rate

• ≤ 5 months
experience
with app, lang,
tools,
platforms

Very Low

Seamless
team
interactions
85th

percentile
• 4% turnover

rate
• 6 years

experience
with app,
lang, tools,
platforms

• Highly
cooperative
teams

• 75th

percentile
• 6% turnover

rate
• 4 years

experience
with app,
lang, tools,
platforms

• Largely
cooperative
teams

• 65th

percentile
• 9% turnover

rate
• 2 years

experience
with app,
lang, tools,
platforms

• Basically
cooperative
teams

• 55th percentile
• 12% turnover

rate

• 1 year
experience
with app, lang,
tools,
platforms

• Some difficult
team
interactions

• 45th percentile
• 20% turnover

rate

• 9 months
experience
with app, lang,
tools,
platforms

Extra HighVery HighHighNominalLow

PSM July 2004 23

USC

C S E University of Southern California
Center for Software Engineering

Integration Processes (IPROC)
Represents a parameter that rates the maturity level and completeness of an
integration team’s integration processes, plans, and the SOS integration lab
(SOSIL). IPROC is the subjective weighted average of the listed characteristics.

Ad-hoc
integration
process
Minimal SOSIL
CMMI Level 1
(lower half)

Very Low

Extensive plans
Fully mature
extended SOSIL
CMMI Level 5

Considerable
plans
Partly mature
extended
SOSIL
CMMI Level 4

Moderate
plans
Mature core
SOSIL
CMMI Level
3

Some
integration
plans
Partly mature
core SOSIL
CMMI Level 2

Minimal
integration plans
Immature core
SOSIL
CMMI Level 1
(upper half)

Extra HighVery HighHighNominalLow

PSM July 2004 24

USC

C S E University of Southern California
Center for Software Engineering

Current Issues

PSM July 2004 25

USC

C S E University of Southern California
Center for Software Engineering

Issues and Questions
Currently Under Investigation

• What is the best size driver
• If software size used

– Should it be limited to the software performing interface operations
– How should COTS product interfaces be accounted for

• If number of logical interfaces is used
– Which ones to include
– What level to count
– How to specify complexities associated with various interfaces

• Do user scenarios and user interfaces capture additional size
information needed to better estimate level of effort

• If multiple size drivers used, what is the relative weight of each
• Model outputs

– Desired granularity of effort estimates
– Associated schedule?

PSM July 2004 26

USC

C S E University of Southern California
Center for Software Engineering

Issues and Questions
Currently Under Investigation (continued)

• How to ensure no overlap with COSYSMO or
COCOMO II models

• Are current scale factors
– Relevant
– Sufficient

• Are current scale factor values/range of values
appropriate

• How well do the various model variations track with
respect to
– Expert judgment
– Actual experiences/projects

PSM July 2004 27

USC

C S E University of Southern California
Center for Software Engineering

SOS Estimation Example Using Only
Software Size as the Size Driver

Hazardous Materials Response
System of Systems

PSM July 2004 28

USC

C S E University of Southern California
Center for Software Engineering

System of System
Architecture Example

Hazardous
Materials

Response SOS

Command
And

Control
3000 eKSLOC

Network
Comms

800 eKSLOC

Sensor
Data

Processing
500 eKSLOC

HazMat
Materials

Identification
900 eKSLOC

PSM July 2004 29

USC

C S E University of Southern California
Center for Software Engineering

SOS Integration Calculations with
Nominal Level 1 and Level 0 Drivers

Level 0 ISMPL IRESL ISBLY CREDY ICAPY IPROC B0
SOS 0.000 0.000 0.000 0.000 0.000 0.000 1.030

Level 1 ISMPL IRESL ISBLY CREDY ICAPY IPROC Bi
Command and Control 0.000 0.000 0.000 0.000 0.000 0.000 1.040
Network Comms 0.000 0.000 0.000 0.000 0.000 0.000 1.040
Sensor Data Processing 0.000 0.000 0.000 0.000 0.000 0.000 1.040
HazMat Material Identification 0.000 0.000 0.000 0.000 0.000 0.000 1.040

Level 1 eKSLOC A1 Bi IPMi
Command and Control 3000 1.000 1.040 4132.436
Network Comms 800 1.000 1.040 1045.234
Sensor Data Processing 600 1.000 1.040 774.956
HazMat Material Identification 900 1.000 1.040 1181.441

Level 0
Level 1

Effort Sum A0 B0 IPM(SOS)
Sum 7134 1.000 1.030 9309.736

Total SOS Integration Effort: ~9310 Person Months or 775.8 Person Years

PSM July 2004 30

USC

C S E University of Southern California
Center for Software Engineering

Potential Range of Values for Example

37%11907Worst
20%6477Best
29%9310Nominal

% of Total
Estimated Nominal
Development Effort

Person
MonthsCase

PSM July 2004 31

USC

C S E University of Southern California
Center for Software Engineering

Parametric Cost Model Critical Path
Tasks and Status

 Converge on preliminary cost drivers,
WBS

 Converge on detailed definitions and
rating scales

 Obtain initial exploratory dataset
 Refine model based on data collection

and analysis experience
 Obtain IOC calibration dataset
 Refine IOC model and tool

PSM July 2004 32

USC

C S E University of Southern California
Center for Software Engineering

Upcoming Calendar of Events: 2004/2005

2004 2005

USC CSE Annual
Research Review
(Los Angeles, CA)

COCOMO Forum
(Los Angeles, CA)

J A S O N D J F M A M J

Practical Software &
Systems Measurement
Workshop
(Keystone, CO)

Proposed First Working Group Meeting

…

PSM July 2004 33

USC

C S E University of Southern California
Center for Software Engineering

Next Steps
• Refine the model based on delphi

inputs and actual data
• Working group meeting at October

2004 COCOMO II Workshop

We would
appreciate
your help!

PSM July 2004 34

USC

C S E University of Southern California
Center for Software Engineering

Questions or Comments?
• Jo Ann Lane

jalane@tns.net
• Websites

http://cse.usc.edu
(COSOSIMO web site coming soon…)

• Books
• Boehm, B., et al, Software Cost Estimation with COCOMOII, 1st Ed,

Prentice Hall, 2000
• Boehm, B., Software Engineering Economics, 1st Ed, Prentice Hall,

1981
• Articles

• Boehm, B., et al., Future Trends, Implications in Cost Estimation
Models, CrossTalk April 2000.

• Gilligan, John M., Department of the Air Force, Military-Use
Software: Challenges and Opportunities, CrossTalk, January 2004.

