
Headquarters U.S. Air Force
I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Headquarters U.S. Air Force

Software SizingSoftware Sizing
Lines of Code and BeyondLines of Code and BeyondLines of Code and BeyondLines of Code and Beyond

Air Force Cost Analysis Agency

C i W ll h iCorinne Wallshein
June 2009

1

Presentation Overview

About software sizing…About software sizing…
Meaning
SourcesSources
Importance
DescriptionDescription
Models
Current challengesCurrent challenges
Conclusion

I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2

What is software size?

Software sizing is a work sizing abstraction

Determining mental efforts and social interactions in
development, production and maintenance:development, production and maintenance:

What is the purpose of the software?
Who cares about it?

What is the data?
Is the data correct?

What should the algorithms do?at s ou d t e a go t s do
Are the algorithms correct?

Who will use it?
A th d d f d i l ?

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Are the needed safeguards in place?

Sources for software size

Cost Analysis Requirements Document
Software schematic diagrams
Software requirements specifications
Sub-system requirements specifications
Analogous (completed) system sizes

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Why sizing is important

“Software size can be an important component of a
productivity computation, a cost or effort estimate, or a
quality analysis. More importantly, a good software size
measure could..lead to a better understanding of themeasure could..lead to a better understanding of the
value being delivered by a software application…there is
no agreement among professionals as to the right units
for measuring software size or the right way to measurefor measuring software size or the right way to measure
within selected units.”

Arlene Minkiewicz, PRICE Systems LLC, “The Evolution of Software Size: A Search for Value”

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

STN 11-3, October 2008: New Directions in Software Estimation

Usage: cost driver for estimation

Capers Jones, Estimating Software Costs, 2007

ESTIMATES

-Schedule
-Effort

PROJECT
ATTRIBUTES

PROJECT
SIZE x =

-Effort
-Costs
-Deliverables

Barry Boehm et al “COCOMO Suite Methodology and Evolution ” 2005

PM = person months.
A = calibration factor.
Size = measure(s) of functional size of a software module that has an additive effect

Barry Boehm, et. al., COCOMO Suite Methodology and Evolution, 2005

Size = measure(s) of functional size of a software module that has an additive effect
on software development effort.
B = scale factor(s) that has an exponential or nonlinear effect on software
development effort.
EM = effort multipliers that influence software development effort.

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Each factor in the equation can be represented by a single value or multiple values

http://www.stsc.hill.af.mil/CrossTalk/2005/04/0504Boehm.html accessed on 6-11-2009

Measuring software size

Stand-alone software Integrated software
One software language
One software developer
One user

Multiple languages
Multiple developers
Multiple users

One component
p

Multiple components

Past Present

Easier to measure Harder to measure

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Advent of new development paradigm:
Object-Oriented (OO) codingObject Oriented (OO) coding

1980s 1990s 2000s1980s 1990s 2000s

1
2

1
2

OO OO

Non-OO

Non-OO

Non-OO

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Source: Air Force Cost Analysis Agency (n = 220 military systems)

Software languages by generation

1st Generation
Machine Language

L
O
W

Gg g
“ 0’s and 1’s ” Circuits

2nd Generation Assembly
“ 1 + 1 = 10; 0 + 0 = 0; 1 + 0 = 1; 0 + 1 = 1 ”

Fix logic structures

L
E
V
E
L

E
N
E
R
AFix logic structures

3rd Generation
Ada Jovial C series {C, C+, C++, C#} COBOL FORTRAN

Java LISP BASIC PASCAL ALGOL
Visual Basic

H
I
G

L

P
U
RVisual Basic

“ Hello World ” User-friendly programming

4th Generation Better, faster, cheaper
Clipper Cold Fusion PowerBuilder IBM Rational EGL

H

L
E
V

R
P
O
S
E

Clipper Cold Fusion PowerBuilder IBM Rational EGL
PL/SQL R SAS IDL FOCUS RPG-II

5th Generation
Prolog OPS5 Mercury

Theory of constraints

V
E
L

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Theory of constraints

Domain Languages - Specialized Specific PurposeSpecific Purpose Languages like: OCL QVT CFML

Software size units by decade

Early user-computer interaction, before 1980
P nch cardsPunch cards
Lines of Code (LOC)

Client-server environments, from 1980 to 1990
Function points (FP)Function points (FP)

Modular software, object-oriented methods, from 1990 to 2000
Object points
Documentation

Component network software (systems of systems), from 2000 to today
Other size measures

Requirements
Use cases
UML diagrams
RICE objects
I t ti f COTS GFS GOTS d OSS

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Integration of COTS, GFS, GOTS and OSS

Sizing method characterization

Based on expert judgment Based on measurable items
Pair-wise comparison
Analogous systems
Case based reasoning

Supporting documentation
Other artifacts
Software documentationg
Prototypes
Previous increments
Legacy systemLegacy system

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Adapted from Pfleeger, Wu, and Lewis, Software Cost Estimation and Sizing Methods, 2005

Sizing units, models & techniques

SIZING MODELS / TECHNIQUES

SOURCE LINES
OF CODE (SLOC)

FUNCTION
POINTS

OTHER
SIZING

OBJECT
POINTSOF CODE (SLOC) POINTS SIZING

Algorithmic Traditional RICE

POINTS

Banker

Analogy Variants

R l Ti

PRICE

SEER SEM

Use Cases

Expert-based

Engineering
Level

Real-Time
Adaptations

SEER-SEM
object sizing UML Diagrams

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Adapted from Donald Reifer’s Software Management, published in 2002

Software size and types

Lines of Code (LOC)

Source LOC (SLOC)

New code

Auto-generated code
Computer-aided software engineering

Thousands of LOC (KLOC)

Thousands of SLOC (KSLOC)

Effective SLOC (ESLOC)

p g g
(CASE) tools
Integrated development environment
(IDE) tools
Model Driven Architecture (MDA) tools

Ad t d l d d dEffective SLOC (ESLOC)

Equivalent SLOC (ESLOC)

Delivered Source Instructions (DSI)

Adapted, leveraged, or reused code
Modified code
Unmodified code
Commercial-off-the-shelf (COTS)
G t f i h d d (GFS)

()

Maintainable Lines of Instruction
(MLI)

Government furnished code (GFS)
Government-off-the-shelf (GOTS)
Open Source Software (OSS)

As Steve McConnell says in Software Estimation: Demystifying the Black Art published in 2006:

I n t e g r i t y - S e r v i c e - E x c e l l e n c e 13

As Steve McConnell says in Software Estimation: Demystifying the Black Art, published in 2006:
“LOC…is a terrible way to measure software size,

except that all the other ways to measure size are worse.”

SLOC comparison

LOGICAL STATEMENTS PHYSICAL LOC
PROS CONS PROS CONSPROS CONS PROS CONS

Excludes dead code Can be difficult to count Are easy to count May include dead code

Excludes blanks and
comments

May include blanks and
comments

U d i b f U d i b f A bi f i dUsed in a number of
estimating tools

Used in a number of
estimating tools

Ambiguous for mixed
language projects

May be ambiguous for reuse Ambiguous for reuse

Poor choice for full life cycle
studies

Poor choice for full life cycle
studies

Ambiguous for some visual
languages

Does not work for some visual
languages

Can be mathematically
converted to FPs Erratic for FP conversion

May be erratic for direct
conversion to physical LOC

metrics

Erratic for logical statements
conversion

Not extensively automated Extensive automation

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Capers Jones, Estimating Software Costs, published in 2007

Model size inputs

COCOMO II Size Inputs SEER-SEM Size Inputs True S Size Inputs

New Size New Size New Size
New Size Non-executable

Adapted Size Pre-existing Size Adapted Size
Adapted Software

New Software

% Design Modified (DM) Adapted Size Non-executable
% Code Modified (CM) Redesign Required % % of Design Adapted
% Integration Modified (IM) Reimplementation Required % % of Code Adapted
Assessment and Assimilation (AA) Retest Required % % of Test Adapted
Software Understanding (SU) Reused Size
Programmer Unfamiliarity (UNFM) Reused Size Non executableProgrammer Unfamiliarity (UNFM) Reused Size Non-executable

Deleted Size Deleted Size
Code Removal Complexity

Adapted SLOC Auto Generated Code Size
Automatic Translation Productivity Auto Generated Code Size Non-executable

Automatically Translated and Generated Code

y
% of Code Reengineered Auto Translated Code Size

Auto Translated Size Non-executable

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

From draft AFCAA Software Cost Estimation Manual, as of June 2009

COCOMO II size quantification

Code
Percent Design
Modified (DM)

Percent Code
Modified (CM)

Percent of
Integration Required

for Adapted

Assessment and
Assimilation

(AA) for reuse

Software
Understanding

SU
Programmer
Unfamiliarity

Category for new
objectives and
environment

for new
objectives and
environment

for Adapted
Software (IM) into
an overall product

(AA) for reuse
or integration of
existing software
into application

(SU) of the
existing software
by programmer

y
(UNFM) with

the software

New Not applicable

AdaptedAdapted
- changes to
pre-existing

software

0% to 100%,
normally > 0%

0% to 100%,
normally > DM,
must be > 0%

0% to 100%,
often moderate,
can be > 0%

0% to 8% 0% to 50% 0 - 1

Reused
- unchanged

existing software

0% 0%
0% to 100%,

rarely 0%,
could be very small

0% to 8% Not applicable

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

From draft AFCAA Software Cost Estimation Manual, as of June 2009

FP Standards
Multiple standards for Function Point metrics

International Function Point Users Group (IFPUG) method’sInternational Function Point Users Group (IFPUG) method s
functional size component

ISO/IEC 20926
Netherlands Software Metrics Association (NESMA)Netherlands Software Metrics Association (NESMA)
functional sizing measurement

ISO/IEC 24570
Common Software Measurement International ConsortiumCommon Software Measurement International Consortium
(COSMIC) functional size metric

ISO/IEC 19761
MkII F i P i A l i h dMkII Function Point Analysis method

ISO/IEC 20968

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

ISO/IEC JTC1/SC7 decision to “Let the market decide” at http://www.cosmicon.com/historycs.asp
Accessed on May 28, 2009

Unadjusted FP Conversion Factors
to get Adjusted FPto get Adjusted FP

Complexity of ComponentType of
Low Average High Total

External inputs ___ x 3 = ___ x 4 = ___ x 6 =

p y pType of
Component

External outputs ___ x 4 = ___ x 5 = ___ x 7 =

External queries ___ x 3 = ___ x 4 = ___ x 6 =

Internal logic files ___ x 7 = ___ x 10 = ___ x 15 =

External logic files ___ x 5 = ___ x 7 = ___ x 10 =

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

From Barry Boehm et al., Software Cost Estimation with COCOMO II, 2000

SLOC per Unadjusted FP (UFP)
Capers Jones's Programming Languages and Levels – Languages identical to

Barry Boehm’s

PROGRAMMING AVERAGE SLOC PERPROGRAMMING
LANGUAGE LEVEL

AVERAGE SLOC PER
UNADJUSTED FP

5th Generation default 70 5

4th Generation default 16 20

3rd Generation default 4 80

2nd Generation default 3 107

1st Generation default 1 320

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Machine language 0.5 640

Impact

Software size, effort, quality and schedule
interrelated in numerous studies
Different metrics for different application domains

Ad t f d i lAdvent of domain languages
Advent of new development paradigms

Proliferation of metrics and better ways to sizeProliferation of metrics and better ways to size
software in numerous studies
SLOC and FP are still the most common metrics

John Bailey, 2006 email: “…Too many projects estimate in function points or use cases,

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

then afterwards compute their productivity using LOC…we have no idea whether they
produced the expected number of functions so no calibration…is accomplished…”

Current challenges

Comparing estimates when size metrics differ
Translation tables between different size units

Established SLOC to UFP translations
N t t bli h d f th i itNot established for other size units

AFCAA building RICE to requirements
translationtranslation
One DOD program building a specifications,
business processes, and test plans translation

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Conclusion

As sizing units change, estimation practices need to
h ith thchange with them

Default size metrics are:
Source Lines of Code (SLOC)Source Lines of Code (SLOC)

Physical SLOC
Logical SLOC

Function Points (FP)
Standards

Impact of new development paradigms: non-OO vs OOImpact of new development paradigms: non OO vs OO
Impact of software type: new, modified and reused
Impact of available components, including COTS, GFS,
GOTS d OSS

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

GOTS and OSS

Thank you for your attention

I n t e g r i t y - S e r v i c e - E x c e l l e n c e 23

