8/9/2010

Software
Development Profile
Model

Arya Khoshkhou 22, Michel Cukier <, Ali Mosleh 2

2 Center for Risk & Reliability, University of Maryland
b Lockheed Martin Corporation
¢ The Institute for Systems Research

14 Annual Practical Software & Systems Measurement
User’s Group Conference

July 26-30, 2010

New Orleans, Louisiana

Background

Despite hundreds of software reliability models,
software engineering discipline is still struggling to
establish a common framework for software reliability
estimation

Some software reliability models use failure data for
their parameter estimation

Other models rely on historical data from similar
projects for parameter estimation

As the result many models can’t be used during the
early phases of software development process
Often people and process execution are ignored in
software reliability models

Software’s Distinct Characteristics

From the reliability point of view software has two distinct
characteristics

Software is subject to continuous change and enhancements

Software changes requires human interaction which can’t be easily
automated

The software development process relies heavily on human judgment
All software defects are caused by human error

Software failures have some deterministic properties
Software does not age (it does not fail due to random failure)

Once a software fault is removed it will never fail for the same reason
again

The random nature of software failure is due to the unknown
locations of faults in the software program

Motivation

The motivation behind this work was to introduce a
causal model for estimating the defect proneness of
various software artifacts based on software
development characteristics

Empirical studies show a strong correlation between
software change history and defect proneness of
software artifacts

8/9/2010

Software Development Process

Software is developed overtime and software changes are
maintained in a developed stream

A development stream is a collection of all development
activities occurred in chronological order

After software changes are made, they are inspected,
tested and the delivered back to the stream in the form of
a change set

2/26/2010 3/4/2010

4/4/2010 5/5/2010 6/10/2010
Change Set #1 Eh:glglr.: Set#2 Change Set #3 Change Set #4 L&L‘Ilw_‘ryto
Delivery elvery Delivery Delivery ustomer

~ | [\
()_veveiopmentstream))))

1200

1/2/2010 -
5/5/2010 - 6/10/2010

Integration & Testing

DEFINITION

A software construct is the smallest software unit
for which data is being collected (software line of
code, function point, source statement, etc.)
Software artifacts are all the products that are
created during software development containing
software constructs (source file, module, class,
documentation, etc.)

8/9/2010

Software Development Profile Model

Software Development Profile Model is based on
the assumption that when a software construct
(SLOC, module, function point, source statement,
etc.) is touched within a change set 'c’, thereis a
chance that it can become defective.

Let's define

¢ _ |1 if aconstruct did notbecome defectiveinchange set'c’
0,if aconstruct became defectivein change set'c'

Software Development Profile Model

Since we don’t know which constructs became
defective in the change set ‘c’, Z¢is a random variable.
Let’s define r¢ as the change set reliability, which is the
probability that a given construct is correctly modified
(created) during change set 'c’

r‘ =pPr{z° =1}

8/9/2010

SDPM - Estimating r*

To estimate r<, we use a Binary Decision Diagram
(BDD) to capture the activities that occur during each
change set

Each decision node in the BDD represents an activity
during the change set

Each edge from a node represents the assignment of
a success or failure of the activity

SDPM - Modeling Software

Development Activities

Example of a simple Binary Decision Diagram

> Nodes:
» C=Coding
» | =Inspection 1-p
» T =String /[SWIT Testing
» R =Repair (Re-work)
> Edges N

P
» P =coding reliability
» q=inspection reliability
> w = testing reliability bad 1up

8/9/2010

8/9/2010

SDPM — Modeling Change Set

Reliability

Based on the sample Binary Decision Diagram
(BDD), the probability that a construct did not
become defective during change set 'c’is

r¢=pPr(z¢=1=p°+
1-p®)-q% p®+
1-p©)a-q°)-w. p°

We denote rcas the change set reliability and p, q, w
are the model parameters

SDPM - Parameter Estimation

Let's define N¢ as the estimated number of constructs
that became defective in the change set 'c’

Let's also define S¢is the size of the change set 'c’
(number of constructs created or modified)

and P‘as the coding unreliability of change set ¢
Assuming the constructs become defective
independently, we can write:

Pr(N°

5°,P%) =[ch-(ﬁ°)“ -

SDPM - Parameter Estimation

N¢ can be estimated during the inspection process
of each change set using methods such as capture-
recapture method

Bayesian theorem can be used to obtain
information about P based on N¢ and size of the
change set 5¢

We use the Beta distribution in conjunction with the
binomial distribution to describe P

—clac noy F(SC+2) (e W (e N
B(p S 1N)_F(NC+1)'F(SC—NC+1) (p) (p)

SDPM - Parameter Estimation

The posterior mean of the Beta distribution is
C

p° zl—% forlarge N and S°¢

Similarly we can estimate the other model parameters
using Bayesian theorem
The posterior mean values of g and w are:

O e t¢
q°"~——and W = —
N (N —1)

Were 'i" is the number of defective constructs observed
during inspection 't is the number of defective
constructs observed during SWIT testing

8/9/2010

8/9/2010

SDPM —Chance Set Reliability

The change set reliability can then be expressed by:

R N ° D°
rF=pPr{z°=043=|1- 11+ —

S¢is the size of the change set ¢

D¢ is the total number of defective constructs observed
during inspection and testing of the change set c

N¢is the estimated number of defective constructs

SDPM — Modeling Change History

Software is developed over a period of time using
multiple change sets

Software constructs can be modified within different
change sets

Each change set is influenced by different factors and
will experience a different change set reliability

It is necessary to capture the change history of
software constructs

SDPM - Modeling Change History

Configuration Management stores the information
about the software change history

This information can be obtained automatically
using available tools

Software change history can be stored in the
Software Change Matrix SCM=(x;) where:

~_Jr®, if thei—thconstruct wastouched inchange set ¢
" |1, otherwise

SDPM — Modeling Change History

Example: The following SCM captures the change
history of g constructs through g change sets.
1 10 11 7
(D 1 1 1 11 1 &1 () =Created
11 1 1 1 1 r° Modified
11 1 r* 11 1 1 1
scM=[11 1 1 11 ()1
11 1 o110
@ 11 1 1 1 1 1 1
11 1 1 650G B 1
111 P11 1 o

8/9/2010

8/9/2010

SDPM - Modeling Change History

Assuming the reliability of each change set is
independent, then the reliability of the i-th construct
can estimated by:

C
C
R = H X ;
j-1

This means that the reliability of a given construct “i”
is the product of the reliability of all change sets,
during which it was touched

If the construct is not touched in a change set, its
reliability remains unchanged

SDPM - Estimating the Number and the

Location of Remaining Defects

The expected number of defective constructsin a
given artifact (M) can be estimated by

E(M®) =i[l— Ric] , Wherem =|M|
i=1

10

8/9/2010

Definition: Software Development

Profile

We define Software Development Profile (SDP) as
the set of all the constructs in the development
stream along with their reliabilities

SDP°© = {(u RE Vi e 55, where R? =ﬁ Xu}

=1
Where:

‘" is the index of the last change set

SSis the set of all constructs included in the Software
Stream

Concluding Remarks

Software Development Profile Model has some
unique and interesting properties:

Flexible: SDPM can be applied to non-executable
artifacts (text files, design documents, requirements,
etc.)

Scalable: SDPM can be applied to the entire software
solution or a subset of the project (specific function,
critical modules, generated code, developed code, GUI
code, etc.)

SDPM can be used to adjust software development
activities to improve software reliability while the
product is still in development

11

Questions & Comments

Contact Information:

Email: arya.khoshkhou®@Imco.com, aria@umd.edu

Office: 301-623-3536

8/9/2010

12

