

<text><text><text><text><text><text><text>

Outline

- Behavioral economics
- Systems Architecting heuristics by Rechtin
- Criteria for developing heuristics
- Four categories of heuristics (Qty. of heuristics)
 - Development (5)
 - Calibration (6)
 - Usage (16)
 - Estimation (4)
- Discussion

This presentation is largely based on the paper: Valerdi, R., (in press) Heuristics for Systems Engineering Cost Estimation, *IEEE Systems Journal.*

Bottom Line Up Front

- 1. Heuristics are effective tools for making decisions when little information is available
- 2. Heuristics are good ways to capture knowledge and teach
- 3. Longevity does not translate into quality

Definitions

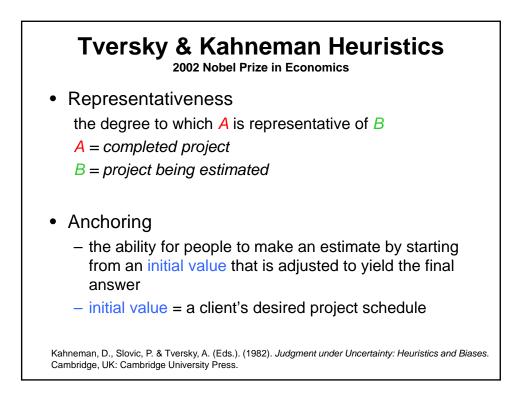
• Heuristic

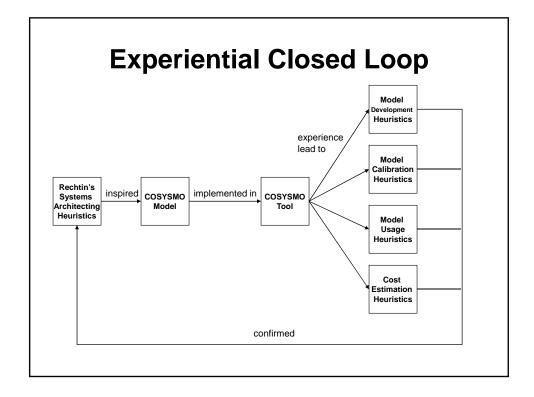
- Rule of thumb, educated guess, simplification, intuitive judgment or common sense
- strategy using readily accessible though loosely applicable information to control problem-solving in human beings
- Example: Work expands so as to fill the time available for its completion*

• Bias

- an unfair preference for or dislike of something
- arises from various life, loyalty and local risk and attention concerns that are difficult to separate or codify
- Example: optimism

*Parkinson's Principle


Rational Choice Theory (homo economicus)


- Modeling of social & economic behavior
- Microeconomic paradigm
- Models of rational choice assume individuals choose the best action according to stable preference functions and constraints facing them

Prospect Theory

- Describes decisions between alternatives that involve risk, i.e. alternatives with uncertain outcomes, where the probabilities are known
- The model is descriptive
 - attempt to model real-life choices rather than optimal decisions

Kahneman, Daniel, and Amos Tversky (1979) "Prospect Theory: An Analysis of Decision under Risk", *Econometrica*, XLVII (1979), 263-291.

Elements of Successful Systems Architects

- 1. Know the engineering <u>fundamentals</u> on which each architecture is based
 - Common sense, derived from specific engineering fundamentals and the experience of other architects, is needed to reduce the search to practical dimensions
- 2. Experience and judgment are necessary
 - Hands-on system problem solving is mandatory
- 3. Acquire the <u>insights</u> gained from experience in the design laboratories on the job

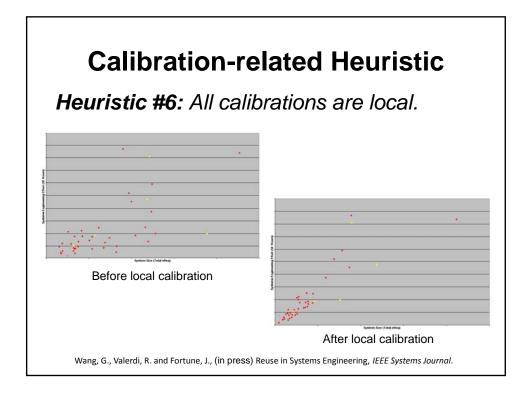
Rechtin, E. 1991. Systems Architecting: Creating & Building Complex Systems, Upper Saddle River: Prentice Hall.

Systems Architecting Heuristic (Rechtin 1991)	COSYSMO Cost Driver	
Success is defined by the beholder (understand his or her requirements) not by the architect	Number of System Requirements	
The greatest leverage in systems architecting is at the interfaces	Number of Major Interfaces	
One person's architecture is another person's system is another person's component	Architecture Understanding	
There will always be friction on the "illity" boundary	Level of Service Requirements	
If you don't understand the existing system you can't be sure you are re-architecting a better one	Migration complexity	
"Proven" and "State of the Art" are mutually exclusive qualities	Technology Maturity	
Amid a wash of paper, a small number of documents become critical pivots around which every project manager revolves	Documentation to Match Life Cycle Needs	
Organize personnel tasks to minimize the time individuals spend interfacing	# and Diversity of Installations & Platforms	
A strong coherent constituency is essential	Stakeholder Team Cohesion	

Criteria for Developing Heuristics

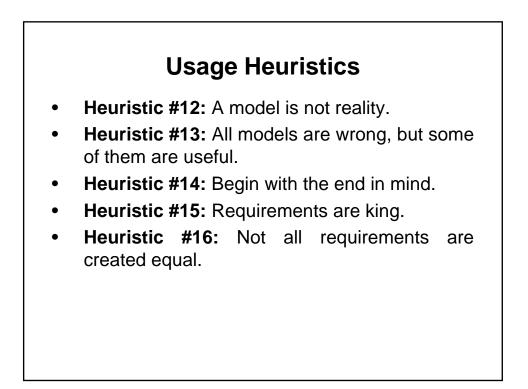
- 1. Agreement among experts that the heuristic is useful and correct
- 2. Heuristic must stand the test of time
- 3. Heuristic must be resilient across different scenarios
- 4. Heuristic must demonstrate value by
 - reoccurring more than once
 - Not be considered obvious by everybody, particularly people who are new to the field

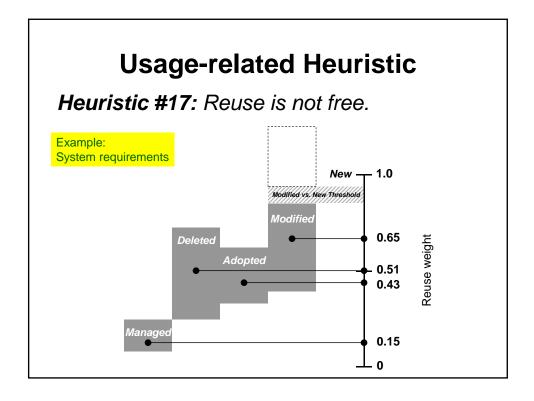
Model Development Heuristics

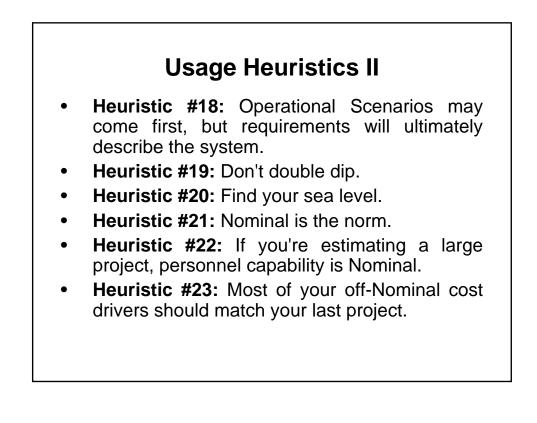

- **Heuristic #1:** More parameters increase the explanatory power of the model, but too many parameters make the model too complex to use and difficult to calibrate.
- **Heuristic #2:** Break the problem and analysis into life cycle phases; the right amount of granularity is important.
- **Heuristic #3:** Let available data drive the application boundaries of the model.
- **Heuristic #4:** Design the rating scale according to the phenomenon being modeled.

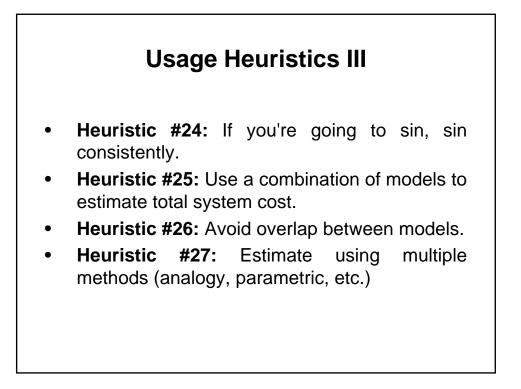
Development-related Heuristic

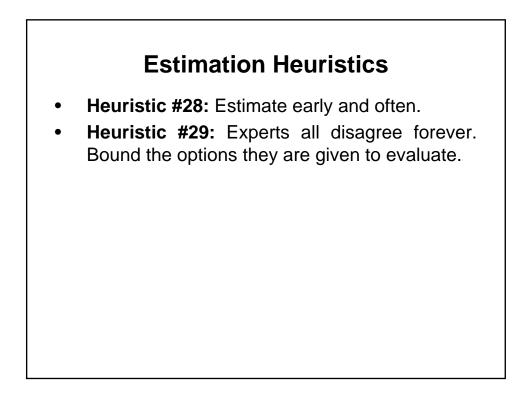
Heuristic #5: Some system characteristics are more likely to be cost penalties than cost savings.

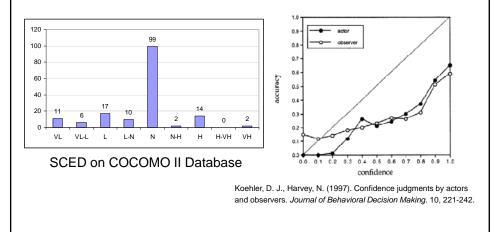

Migration Complexity cost driver in COSYSMO

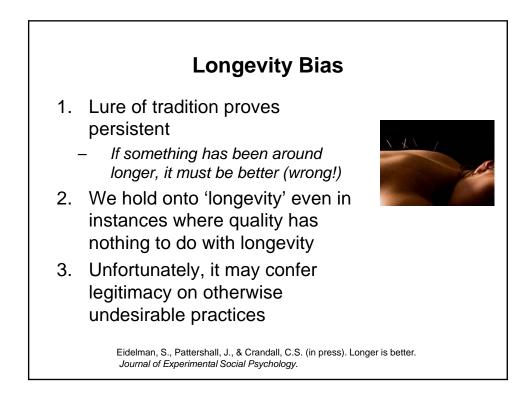

	Nominal	High	Very High	Extra High
Legacy contractor	Self; legacy system is well documented. Original team largely available	Self; original development team not available; most documentation available	Different contractor; limited documentation	Original contractor out of business; no documentation available
Effect of legacy system on new system	Everything is new; legacy system is completely replaced or non- existent	Migration is restricted to integration only	Migration is related to integration and development	Migration is related to integration, development, architecture and design




Model Calibration Heuristics


- **Heuristic #7:** Calibrations fix chronic errors in over- or underestimation.
- **Heuristic #8:** Be skeptical of data that you did not collect.
- **Heuristic #9:** For every parameter in the model, 5 data points are required for the calibration.
- **Heuristic #10:** Don't do more analysis than the data are worth.
- **Heuristic #11:** You need less data than you think, you have more data than you think.





Estimating-related Heuristic

Heuristic #30: Models are optimistic. *Heuristic #31:* People are generally optimistic.

...Bottom Line (Again)

- 1. Heuristics are effective tools for making decisions when little information is available
- 2. Heuristics are good ways to capture knowledge and teach
- 3. Longevity does not translate into quality