Workshop #7
What Does Technical Debt Mean at a

System Level?

Bob Epps/Garry Roedler
Lockheed Martin Corporation
PSM User’s Group Conference

July 14, 2011

Technical Debt Workshop for Systems
Engineering
Agenda

Management of Technical Debt- Steve McConnell
Technical Debt Observations- Jim Highsmith

Types of Debt- Chris Sterling

Break

Workshop Exercise # 1-ldentifying Technical Debt
Management of Architectural Debt- Ipek Ozkapa
Workshop Exercise # 2- Architecture & Technical Debt
Workshop Exercise # 3- System Design & Technical Debt
Workshop Summary/Action Plan

Technical Debt

“Management of Technical Debt”, Steve McConnell

i“w(

Technical Debt’ refers to the delayed technical
work that is incurred when technical short cuts
are taken, usually in pursuit of calendar driven
software schedules. Just like financial debt, some
technical debt can serve valuable business
purposes. Other technical debts are simply
counter productive. The ability to take on debt
safely, track their debt, manage their debt and pay
down their debt varies among organizations.
Explicit decision making before taking on debt and
more explicit tracking of debt are advised”

Technical Debt

“Management of Technical Debt”. Steve McConnell

o (¢

Technical Debt’ refers to the delayed technical
work that is incurred when technical short cuts
are taken, usually in pursuit of calendar driven
software schedules. Just like financial debt, some
technical debt can serve valuable business
purposes. Other technical debts are simply
counter productive. The ability to take on debt
safely, track their debt, manage their debt and pay
down their debt varies among organizations.
Explicit decision making before taking on debt and
more explicit tracking of debt are advised”

Technical Debt

“Management of Technical Debt” Steve McConnell

— “The term ‘technical debt” was coined by Ward
Cunningham to describe the obligation that a
software organization incurs when it chooses a design
or construction approach that’s expedient in the short
term but that increases complexity and is most costly

in the long term”

— There are two kinds of technical debt

e Type |, Debt incurred unintentionally
— Inexperienced individuals produces error prone results

e Type Il, Debt incurred intentionally
— Conscious decision to optimize for the “present” rather than the
“future”

Technical Debt

“Management of Technical Debt”, Steve McConnell

* Type Il, Debt incurred intentionally
— “Short-Term” Debt (Type II.A)

» A company takes on a short term debt when it has the money; it just does
not have it now.

» Short term debt is expected to be paid off frequently
» Focused Short-Term Debt(Type 11.A.1)
» Unfocused Short-Term Debt (Type II.A.2)

* Should be avoided

— “Long-Term” Debt(Type II.B)

» A company takes on strategically and proactively

» Primary rationale is that the development work “today” is seen as more
expensive than the cost in the future.

» Example:

* Responding to “Time to Market” pressures
* Preservation of Startup capital
* Delaying Development expense

— Debt Service

» The “interest” charged for incurring the debt

Technical Debt

“Management of Technical Debt”, Steve McConnell

Summary of Kinds of Debt
Non Debt

Features backlog, deferred features, cut features, and so on. Not all incomplete work is debt.
These are not debt because they do not require interest payments

Debt

|. Unintentional Debt. Debt incurred unintentionally due to low quality

Il. Intentional Debt. Debt incurred intentionally
Il.A Short-Term Debt. Short Term Debt, usually incurred reactively, for tactical reasons
II.LA.1 Focused Short Term Debt. Individually identifiable shortcuts(like a car loan)
I.LA.2 Unfocused Short-Term Debt. Numerous tiny shortcuts(like a credit card)
II.B Long-Term Debt. Long-term debt, usually incurred proactively, for strategic reasons

Technical Debt

“Management of Technical Debt”, Steve McConnell

Communicating about Technical Debt

Shift from Technical vocabulary to a Financial vocabulary

Use a projects Maintenance budget as a rough proxy for
its technical debt service load

Discuss Debt in terms of “money” instead of “features”
Be sure you're taking the right kind of debt

Treat the discussion of Debt as an ongoing dialog rather
than a single discussion

Technical Debt Observations

“Agile Project Management”, Jim Highsmith, second edition

Customer
Responsiveness
(@)
o
L
()
g" Actual
©
6 CoC
— Product
(@) Release
+— . A
8 | 1 Technical Debt
|
(@ | y
[y - Optimal CoC
] — ——— — >
1 2 3 4 5 6 7 8

Technical Debt Observations

“Agile Project Management”, Jim Highsmith, second edition

— “When product development teams give lip
service to technical excellence, when project and
product managers push teams beyond quickness
into hurrying, technical debt is incurred”(pp 216)

— “Technical debt can arise during initial
development, ongoing maintenance (keeping a
product at its original state), or enhancements
(adding functionality).”(pp 216)

When does the insertion of Technical Debt have its greatest impact?

Technical Debt Observations

“Agile Project Management”, Jim Highsmith, second edition

— “Without a firm dedication to long-term technical
debt management, development groups are
pressured into increasing technical debt trap. As
the debt gets worst, the delays become greater. As
the delays lengthen, the pressure increases,
usually leading to another hurried
implementation, which increases the technical
debt yet again.”(pp 217)

Technical Debt Observations

“Agile Project Management”, Jim Highsmith, second edition

— “It must be noted that managing technical debt
does not keep products from becoming obsolete.
A technical debt strategy does not attempt to
stave off eventual obsolescence, but keeps the
cost of change low so that customer
responsiveness remains as high as possible during
a product life.”(pp 217)

Types of Debt

“Managing Software Debt: Building for Inevitable Change”, Chris Sterling

e Software Debt

— Composed of the following forms of “Debt”

e Technical Debt, Quality Debt, Configuration Management
Debt, Design Debt & Platform Debt

— Indicators of Software debt are the following:
e Do you have “like-to-like” migration?
* Do you have “limited expertise” available?
Do you have “expensive release stabilization” phases?

e Do you have “increased cost for regression testing” your
software assets?

Types of Debt

“Managing Software Debt: Building for Inevitable Change”, Chris Sterling

Technical Debt

— These are activities that a team or team members choose not to do
well now and will impede future development if left undone

Quality Debt

— There is a diminishing ability to verify the functional and technical
quality of software

Configuration Management Debt

— Integration and release management becomes more risky, complex
and error-prone

Design Debt

— The cost of adding features is increasing toward the point where it is
more than the cost of writing from scratch.

Platform Debt

— The availability of people to work on software changes is becoming
limited or cost-prohibitive.

Types of Debt

“Managing Software Debt: Building for Inevitable Change”, Chris Sterling

e Technical Debt

— “.the decay of component and inter-component behavior when
the application functionality meets a minimum standard of
satisfaction for its users”

— Produced by work patterns:

e Schedule pressure

— “Excessive pressure causes team to take short cuts to meet expectation of
management and customer”

e Duplication

— “..because of cut-and-paste tactics results in teams making even simple
changes in more than one place.”

* Mentality of getting it right the first time
— “.incorrect assumptions about what we can know about the future.”

— “.payoff Technical Debt immediately, insert strategically placed

runtime exceptions, and add technical debt to the Product
Backlog.”

Relationship to SW Technical Debt?

R s~ d ° Do these examples apply

| to Systems?
* Design A
— Inconsistent approaches VV : :
— Poor cLoice ofpcpomponents/frameworks E‘ 1: — Al deSIgn items here are

— Hindsight desi :
s coge RN valid to systems

— Duplicate code
— Overly complex modules
— Standards violations
— Lack of documentation
— Style drift or clash
e Test
— Incomplete coverage
— Hard to maintain tests
— Excessive tests

Today’s tools make it easy to identify and measure
many of these forms of technical debt.
Copyright Lockheed Martin 2011

— Although code does not
apply, the sub-bullets apply
if it were for requirements

— Test items apply, but could
be augmented to V&V

e Are there other sources of

Technical Debt?
— Could go through the
system life cycle and

determine where shortcuts
are often taken

16

Types of Debt

“Managing Software Debt: Building for Inevitable Change”, Chris Sterling

Quality Debt

— “To sustain the internal quality of software, teams
must approach development in a disciplined way.
Common approaches that teams use to sustain
internal quality are the following:

e Sustainable pace

e Early identification of internal quality problems
* Close collaboration

e Refactoring

e Small batches of work

e Defining technically done

e Potentially shippable product increments

e Single work queue”

Types of Debt
e Thoughts about:

— Configuration Management Debt
e Were shortcuts taken in Configuration Control?
* Lack of version control

— Design Debt

e Adapting the existing design to meet new requirements costs more than
a new design

— Platform Debt

e Look for SW solution to compensate for platform inadequacies

Relationship to SW Requirements Debt?

TBDs and TBRs late in lifecycle Missing TBDs and TBRs
)
kg -
Py
SR
Overly detailed requirements Obsolete requirements

Do these examples apply to
Systems?
— Each apply

— TBDs/TBRs late drive
unintended change

— Missing TBDs/TBRs drive
potential rework due to missed
analysis

— Detailed requirements cross
the boundary into design

Are there other examples of
Requirements Debt?

— Operational Concepts?
* Incomplete

— Stakeholder/mission
requirements?
e Same as the requirements

debt here, but different
perspective

e Can come to contractor
already with technical debt

19

Relationship to SW Decision Debt?

——+ Do these examples apply
to Systems?

Ne — All apply

N * What are impacts of
— decisions for:
Decisions made too late "‘“"“

— Technology selection?

e Too early — can provide
obsolete/non-supportable
solution

* Too late — miss schedule

* Inadequate info — choose
wrong or immature
technology

— Manufacturability?

Decisions made too early

Decisions based on
inadequate information

What is the level of confidence that you have in your decisions?

— Sustainability?

20

Workshop Exercise # 1
ldentifying Technical Debt

Development profile (Perfect World)
Defect Density profile

Development profile(Real World)
Mapping Development Profiles

% Effort per Phase

Development Cost(Perfect World)

Integration

Analysis Design Implementation Test

Classification of Defects

Typical Defect Profiles

Design
Defects

Implementation
Defects

Integration
Defects

Analysis Design Implementation Test Integration

Inmmmmmm——— Defect Insertion I Defect detection & Removal

% Effort per Phase

Development Cost(Real World)

Integration

Analysis Design Implementation Test

% Effort per Phase

Development Cost

Test Integration

Analysis Design Implementation

Development Cost

/ \ Technical
Debt?

Technical
Debt? —

% Effort per Phase

Debt?

IT\ Technical
/

Analysis Design Implementation Test Integration

% Effort per Phase

Development Cost

Better or Worse?

Technical

Technical
Debt?

Analysis Design Implementation Test Integration

% Effort per Phase

Technical

Debt? \

Development Cost

Better or Worse?

Technical
Debt?

Analysis

Integration

Design Implementation Test

% Effort per Phase

COTS Integration

Teehni

ebt?

Analysis Design Implementation Test Integration

Technical Debt

“Enabling Agility by Strategically Managing Architectural Technical Debt”, Ipek Ozkaya

— “Practices intended to speed up the delivery of
value to users, however, often result in high
rework costs that ultimately offset the benefits of
faster delivery, especially when good engineering
practices are forgotten along the way. The rework
and degrading quality often is referred to as
technical debt”

— “For example, through our work on architecture-
centric engineering, we often encounter projects
that defer modifiability requirements, specifically
portability.”

Technical Debt

“Enabling Agility by Strategically Managing Architectural Technical Debt”, Ipek Ozkaya

— “Our current work focuses on architectural
technical debt, which involves architectural
decisions made to defer necessary work during
the planning or execution of software projects,
such as short-cuts taken in designing the structure
of the system that may require rework.”

— “We are particularly interested in identifying the
measureable aspects of architectural technical
debt by exploring dependency analysis”

Technical Debt

“Enabling Agility by Strategically Managing Architectural Technical Debt”, Ipek Ozkaya

— “By the end of this project, we will produce a
model for managing technical debt that will allow
the incurrence of some debt to increase delivery
tempo when needed, but prevent too much
accumulation, which would impede the ability to
deliver.”

Reference: “Enabling Agility through Architecture”,

Nanette Brown, Robert Nord, Ipek Ozkaya; CrossTalk-Nov/Dec 2010

Workshop Exercise #2
Architecture & Technical Debt

WBS]) Cost Estimate
Notional Architecture Process Low |prob |High |

|:| Segment A
L . L . Segment B

——= Segment D

. 1 O]
| Segment H
|:| |:| Segment |

Architecture l

) Risks
Schd | Cost | Tech
Risk A L
Risk B M
ﬁ Risk C M
Risk D H
Risk E H

Where can Technical Debt
be incurred in this process?

System Requirements System Integration Plan

Al System Segment
sow
| 1 egment
BS
e
I_I_I I_I_I

System Segment Schedule

(1] (Domain Knowledge)

Notional Architecture Process

Review and
Declare Refine ESvaIuate
ﬁ Architecture > > ystem
Syste.m Level Complexity
Requirements
Step 1 Step 2 Step 3
Identify, Review Refine Define System
> & Select NDI | Architecture * Load Distribution
Products 2 WEBS on Infrastructure
Step 4 Step 5a & 5b Step 6
Establish Refine #
> Integration | Architecture
Strategy

Step 7

Step 8

Notional Architecture Process

(continuation)
Estimate Cost Estimate Cost Determine
For Each »| for Complete .| System Level
Risks
SyStem Element SyStem (Cost, Schedule, Technical)
Step 9 Step 10 Step 11
Refine Refine Refine v

Archltecture.& . Requirements | Integration Risks within
Implementation [*) Strategy Acceptable /* Step 12

Step 15 Step 14 Step 13

Complete and
Submit BOEs and
Associated Risks

Step 16

Step 1 Declare Architecture

Al to/for X Can the Design objectives
SOW Spec Objectt™™" en : beasource ofora
"""" ito Cost (DTC): mitigation for Technical
: Objectives Debt?
B5 BS B5
Spec
Spec Spec

Are “Derived” requirements a source
or a mitigation for Technical Debt?

Step 3 Evaluate System Complexity

Fidelity

Response Time
Factor Z
High

~
Medium
N
Moderate \
\ '~
Resource Low ~
Utilization b ¢ Size
7’
7
7’
7
{d

= Required

(X

— - Proposed

. . Factor X
Maintainability Is Technical Debt

Reliability a System complexity factor?

Step 4 Identification, Review & Selection of NDI Products

Does selection of NDI
incur Technical Debt?

Steps 5a, 8 & 15 Refine Architecture

Step 5b Refine WBS

WBS

CPUF

Step 6 Load Build Plan

________ N

Frame 1

Frame 2

Is this a source of
Technical Debt?

Frame 3

Frame n

Steps 7 & 13 Integration Strategy/Plan

System Element

Complexity
Element C
Flement A /
Element B Element | Element H
Element E
Element F

Element D Element G /

System Element Schedule

What type of Technical Debt is incurred
if the Integration Strategy is ill-defined?

Step 9 System Element Level Cost Estimate

Cost Estimate

Low | Prob | High | Estimate

Analysis

Design

Integration

Total

Estimate = High - Low + 4(Prob)
6

Step 10 System Level Cost Estimate

Cost Estimate

Low | Prob | High | Estimate

Element A

Element B

Element E

Integration

Estimate = High - Low + 4(Prob)
6

Step 11 Risk Identification/ Mitigation

Risks
Sch | Cost | Tech
Risk A L
Risk B H
Risk C H
Risk D L
Risk E H

How is Technical Debt related to
Schedule, Cost and Technical Risks ?

Step 12: Assessment of Risks against Acceptance Criteria

Risks within
Acceptable
Limits

No

Is this where “intentional” or “unintentional”
level of Technical Debt is determined?

Workshop Exercise # 3
System Design & Technical Debt

Bennett Notation

Behavioral Diagram

==

PP]

Legend

g L
-—lsvma.

——
',

Parallelism
Synchronization
Points

—rm————TC
em———— =
[P
S=tVem\am,

Decision

Data

O OAV

Process

/
T
P Data Flow

_____ > Control Flow

Based on

“Visualizing Software: A Graphical Notation for Analysis, Design and Discussion”, William S. Bennett

Sample of
Timing Allocation
to Processes

Basic Parallel
Process

Sample of

Timing Allocation
to Processes

. Design decision that
Incurs Technical Debt

Basic Parallel
Process

How to Measure and Manage System Debt
Measure and Manage— Technical Debt 7;

Module Complexity

¢ Technical debt from static analysis
tools
— Measure trends
— Manage by setting thresholds for
action and by identifying areas for
developer attention

* Test coverage debt
— Measure test coverage throughout
the lifecycle
— Manage by adding tests where
needed to meet coverage goals or
reduce risk

e TBDs and TBRs
— Measure total count and count for
requirements scheduled for
implementation in the next couple
of iterations
— Manage to reduce open TBDs and
TBRs in upcoming iterations

e Requirements Stability Index
— Measure average complexity by
component
— Manage by using isolation patterns
in areas with most instability

LU

50

20

Respect software’s limitations while leveraging its power.

Test Coverage for Iteration N

Package n Branch
Name Coverag|
e

jabed 75% 64%
@iiiiimii | 43% |

labgrs 3 0% 0%

v 13 90% 75%

labcdet 10 86% 88%

TBD / TBR Counts

 Total Count.

|
I courtfer Hest
|I I l l T

1 & 4 4 & & 7

Stability Index

Dby

e Do these measures apply for
System Debt?

— Fixes would be based on
prioritization/severity

— Technical reviews for architecture
instead of Static Anl

— Test coverage may apply
— Requirements debt measures apply

e Other thoughts on measures

— Confidence in architectural
elements — could drive prototyping

— Early validation of architecture
— % of architecture integrated

— Requirements validation debt (%
requirements validated)

— Requirements simulation debt

(% requirements simulated)

— Requirements verification debt
(% requirements verified)

Technical Debt Workshop Summary

e Technical Debt
— Management of Technical Debt- Steve McConnell
— Technical Debt Observations- Jim Highsmith
— Types of Debt- Chris Sterling
— Management of Architectural Debt- Ipek Ozkapa

e Technical Debt applicability to Systems
— Workshop Exercise # 1-ldentifying Technical Debt
— Workshop Exercise # 2- Architecture & Technical Debt
— Workshop Exercise # 3- System Design & Technical Debt

Technical Debt References

Managing Technical Debt

— Steve McConnell

— http://www.construx.com/Page.aspx?cid=2801

The Financial Implications of Technical Debt

— Jim Highsmith

— http://www.jimhighsmith.com/2010/10/19/the-financial-implications-of-
technical-debt/

Second International Workshop on Managing Technical Debt

— http://www.sei.cmu.edu/community/td2011/

Technical Debt or Strategic Opportunity

— https://files.me.com/philippe.kruchten/rgw078

Enabling Agility by Strategically Managing Architectural Technical Debt
— Ipek Ozkaya

— http://blog.sei.cmu.edu/post.cfm/enabling-agility-by-strategically-managing-
architectural-technical-debt

Technical Debt Workshop

Action Plan

** White paper on Technical Debt applicability to Systems
» Outline
» Describe Technical Debt in Systems Engineering Vernacular

» ldentify sources and methods of measurement of Technical
Debt within the Systems Engineering Life Cycle
. System Requirements Analysis
. System Architectural Design (all levels)
. System Implementation
. System Integration, Verification and Validation
. System Transition (Deployment)
. System Operations and Maintenance

» |dentify of implication of System Level Technical Debt to
Software and Hardware Elements

