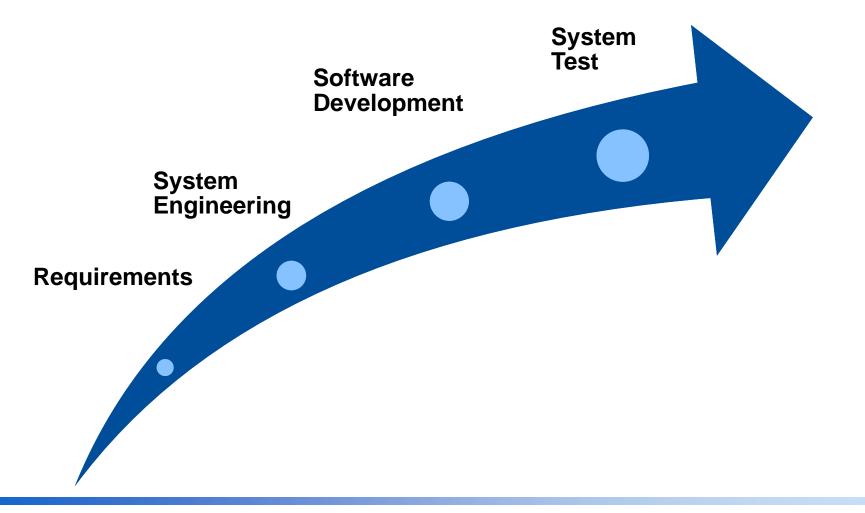
Ogden Air Logistics Complex

A Software Estimating Model Using Tagged Requirements

Hill Air Force Base 309th Software Maintenance Group

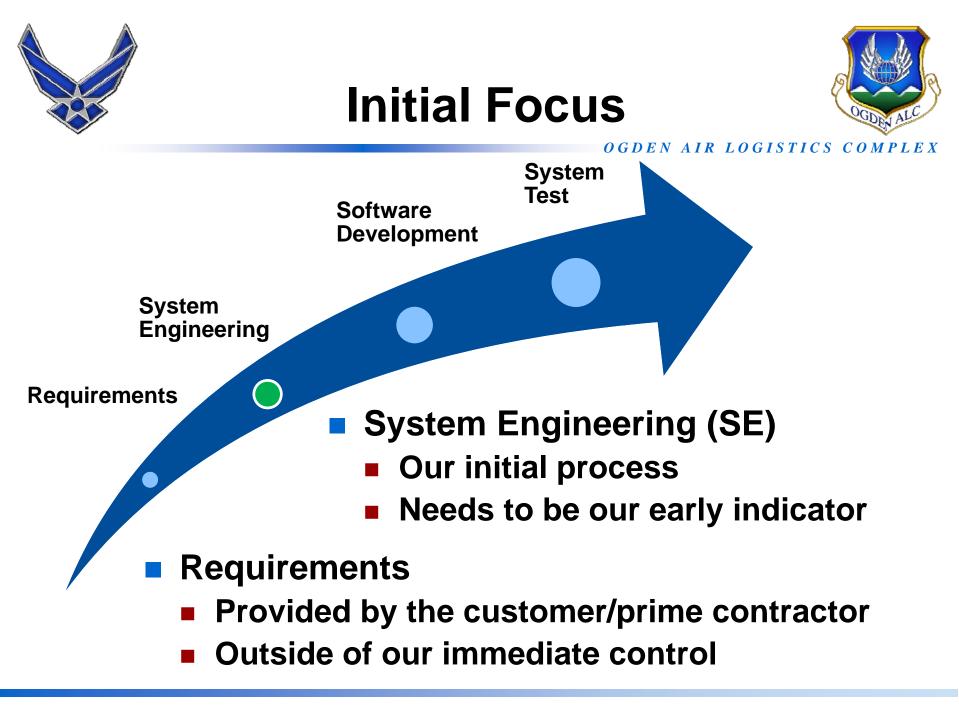
> David Jolley David Webb

- Determine the Relationship Between Software Requirements and Schedule
- Comprehend Requirement Tags
 - How to isolate and tag requirements
 - How to identify and utilize traceable tags
- Comprehend Process Modeling
 - Reasoning for using models
 - How to get started
 - How to improve and refine models
 - Benefits provided by modeling


- 309th Software Maintenance Group
 - Over 1100 engineers, scientists and support personnel
 - Providing software support for dozens of weapons and information systems
- Created a Successful Software Estimating Model
 - Initially for a single weapon system
 - Now being deployed on several programs
 - Requires historical data many projects using data collected IAW the Software Engineering Institute's Team Software ProcessSM (TSPSM)

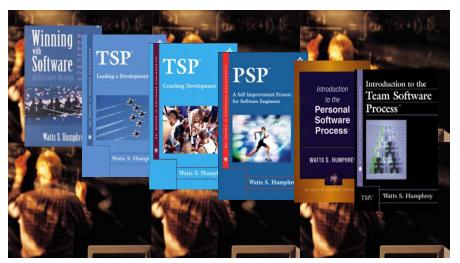
SM Team Software Process and TSP are service marks of Carnegie Mellon University

Development Process



Management Desire

- Provide Accurate Estimates
 - Engineering EFFORT
 - Release SCHEDULE
 - Customer COST
- Establish Estimation Model
 - Utilize objective factors as input
 - Determine key objective factor(s)
 - Keep it simple, quick and accurate

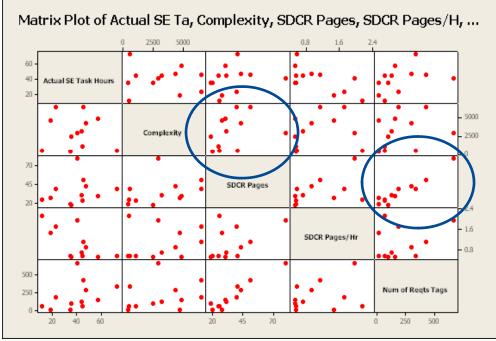

Our Advantages

OGDEN AIR LOGISTICS COMPLEX

- Team Software ProcessSM (TSPSM)
 - In use by the team
 - Tools in place to consistently collect data
 - Team had historical data
- Mature processes
 - Organization was CMMI Level 5 certified
 - Well defined metrics
 - Earned Value Management (EVM)
 - Earned Hours: referred to as Task Hours

 $^{\mbox{\scriptsize SM}}$ Team Software Process and TSP are service marks of Carnegie Mellon University

SE Historical Data


D الم	Condidate		Complexity		SDCR	
Build	Candidate	Actual SE Task Hours	Complexity	SDCR Pages	Hours/Page	Num of Reqts Tags
8.0.3	Control External Cooling Fans	58.00	4875	30	1.93333	154
8.0.3	Control Throttle Override	44.20	1681.0924	31	1.42581	136
8.0.3	Manage SSPC	47.50	4325	43	1.10465	710
8.0.3	Power Up (Initial)	45.77	6500	51	0.89739	638
8.0.3	Power Down (Initial)	22.78	954.8526	39	0.58419	317
8.0.3	Provide Throttle	35.68	1875.2162	18	1.98241	100
8.0.3	Perform Self Test Update	73.23	3451.8562	40	1.83083	385
8.0.4	Manage Hydraullics with Engine Power	34.88	5575.3932	65	0.53667	383
8.0.4	Control Automotive Steering	120.77	3990.87	33	3.6596	140
8.0.4	Control Shifting	111.90	2445	55	2.03455	302
8.0.4	Display Drive Train Data	18.52	4709	27	0.6858	15
8.0.4	Provide ECS Vent	53.27	5575.3932	35	1.5219	205
8.0.4	Control Horn	10.28	295.62	16	0.64271	
8.0.4	Raise-Lower Ramp	56.67	2813.317	50	1.13333	138
8.0.4	Control Mobility Transition	40.67	2915	80	0.50833	669
8.0.4	Control Bow Flap Lock	35.07	415	19	1.84561	. 14

Data Relationships

- Several Relationships Looked Intriguing
 - Centered around System Design Change Request (SDCR) pages
 - Found potential
- Key Relationships?
 - Complexity vs.
 SDCR Pages
 - SDCR Pages vs. Requirements Tags



- Poor Correlation
 - 14.6% Low R
 - 8.5% Low R²
 - 0.144 High p

Regression Analysis: Complexity versus SDCR Pages

The regression equation is

Not suited for estimating purposes

SDCR Pages Vs. Tags

- Moderate Correlation
 - 55.1% Moderate R
 - 51.9% Moderate R²
 - 0.001 Low p

Regression Analysis: SDCR Pages versus Num of Reqts Tags

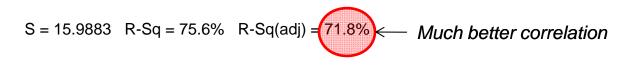
The regression equation is

SDCR Pages = 24.4 ± 0.0560 Num of Reqts Tags S = 12.1462 R-Sq = 55.1% R-Sq(adj) = 51.9% May be useful for estimating Analysis of Variance Source DF SS MS F Regression 1 2536.6 2536.6 17.19 0.001

May be useful for estimating

Tags Vs. Hours/Page

OGDEN AIR LOGISTICS COMPLEX


Regression Analysis Gave Better Correlation

- 75.6% Good R
- 71.8% Good R²
- 0.000 Excellent p

Regression Analysis: Actual SE Ta versus SDCR Hours/P, Num of Regts

The regression equation is

SE Task Hours = - 8.9 + 33.2 *SDCR Hours/Page + 0.0486 *Num of Regts Tags

Analysis of Variance

Source DF SS 2 Regression

10280.8 5140.4 20.11 0.000

Much better for estimating

MS

Tagging Requirements

Tag	Requirement					
DOORS ID	UCD Requirements - Lower Ramp					
SD450-2370	2 Flow of Events					
SD450-2371	2.1 Basic Flow - Lower Ramp					
SD450-2372	2.1.1 Assumptions					
SD450-2373	Vehicle is not in Water mode or performing a Reconfiguration					
SD450-2374	The Engine or APU is running					
SD450-2375	2.1.2 Operator Lowers Vehicle Ramp (SAFETY CRITICAL)					
SD450-2376	1. Operator selects Lower Ramp					
SD450-2377	The Use Case begins when the Operator selects the Lower Ramp control as defined in the MMI Screen document.					
SD450-2378	The System deasserts system fault: RAMP_LOCK_FAILED_TO_UNLOCK.					
SD450-2379	2. System checks Vehicle mode					
SD450-2380	The System determines the vehicle is not in Water mode and the Reconfiguration function is not					
	active.					
SD450-2381	3. System checks current ramp state					
SD450-2382	The System determines the current ramp state is Locked. Extends Monitor Hatches at Extension					
	Point: Current Ramp State.					

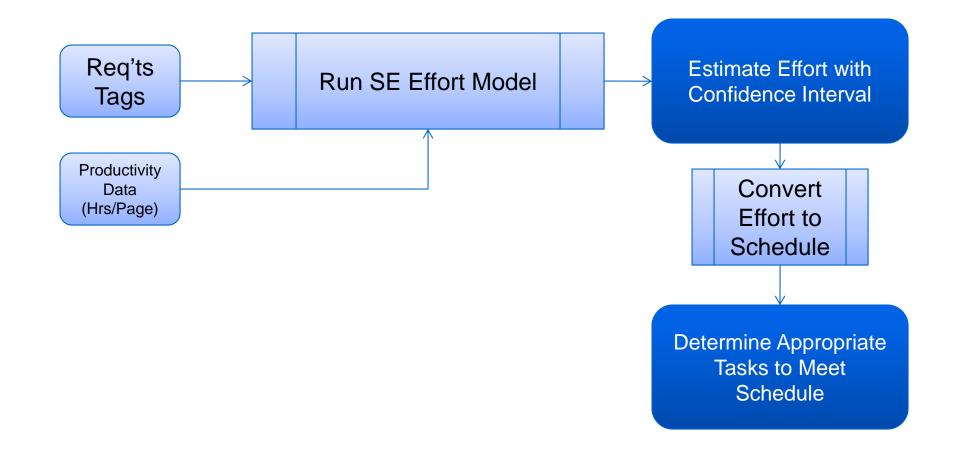
Traceable Requirements

OGDEN AIR LOGISTICS COMPLEX

	Tag	Requirement		
		Configured Item Verification M		bd
I	DOORS ID	UCD Requirements - Lower Ramp	CI	VM
	SD450-2370	2 Flow of Events		
İ	SD450-2371	2.1 Basic Flow - Lower Ramp		
İ	SD450-2372	2.1.1 Assumptions		
İ	SD450-2373	Vehicle is not in Water mode or performing a Reconfiguration	_	
İ	SD450-2374	The Engine or APU is running		
	SD450-2375	2.1.2 Operator Lowers Vehicle Ramp (SAFETY CRITICAL)		
Ī	SD450-2376	1. Operator selects Lower Ramp		
	SD450-2377	The Use Case begins when the Operator selects the Lower Ramp control as defined in the MMI Screen document.	M, C	D
	SD450-2378	The System deasserts system fault: RAMP_LOCK_FAILED_TO_UNLOCK.	M, C	D
Ö	SD450-2379	2. System checks Vehicle mode		
aceab	SD450-2380	The System determines the vehicle is not in Water mode and the Reconfiguration function is not active.	М	Ι
	SD450-2381	3. System checks current ramp state		
	SD450-2382	The System determines the current ramp state is Locked. Extends Monitor Hatches at Extension Point: Current Ramp State .	М	D

7/31/2012

Modeling Effort



- Establish Model
 - Estimate EFFORT in SE task hours
 - Use historical SE task hours
 - Determine SCHEDULE on SE task hours per week
- Adjust For Variation
 - Model has an inherent variation
 - Use variation to determine confidence
 - Provide confident intervals in EFFORT and SCHEDULE
- Improve & Refine Model
 - Track candidate progress against estimates
 - Compare progress with group control limits
 - Analyze and adjust

Determining Effort

Initial Model Failed

- Model's Performance During Next SE Cycle
 - Every SDCR was estimated at 24 task hours!
 - Model was overwhelmed
 - Average hours/page productivity numbers
 - Low initial value and low coefficient value of tags
 - Initial model failed the "sniff test"
- Model Was Refined
 - Used a two-step model, first determining SDCR Pages using Requirements Tags, then calculating hours using productivity (Hours/Page)
 - The Monte Carlo Method was used to calculate the Hours/Page input, taking into account variability of historical data
 - A new and improved model was established:

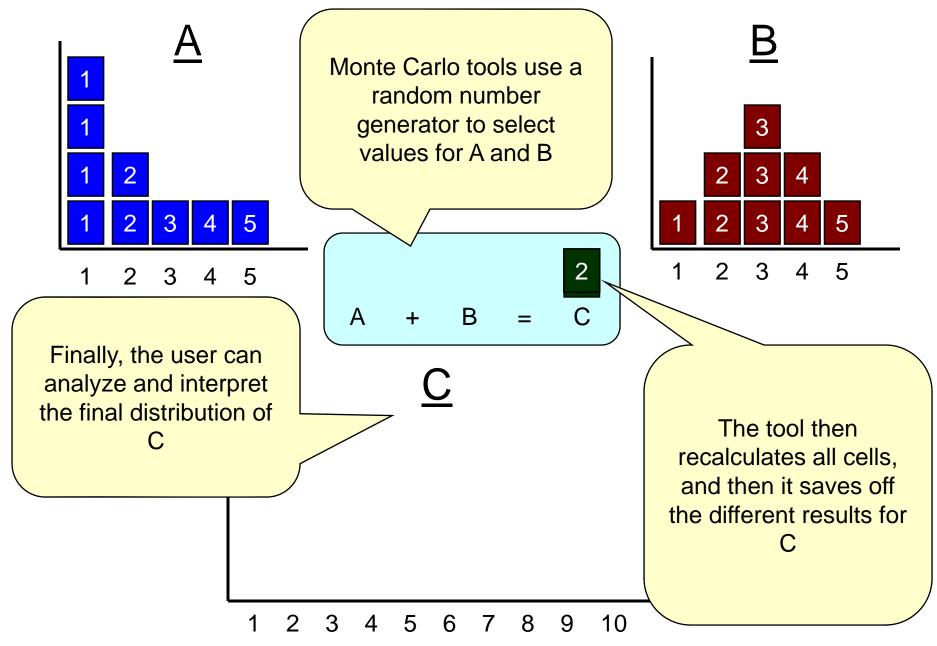
- Found a great correlation between tagged requirements and design pages

SDCR Pages = 21.8 + 0.0724*Num of Reqts Tags

SE Task Hours = SDCR Hours/Page * SDCR Pages

Replaced average productivity with historical distribution

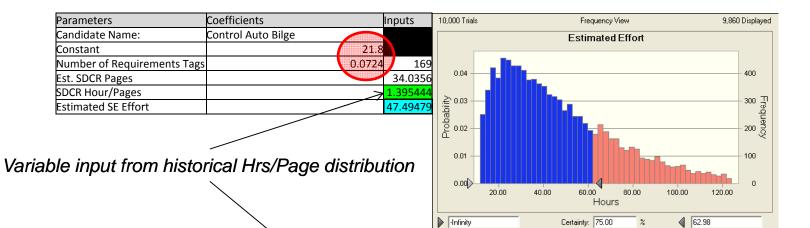
What is the Monte Carlo Method?


- A technique using random numbers and probability distributions to solve problems
- Uses "brute force" computational power to overcome situations where solving a problem analytically would be difficult
 - Iteratively applies random numbers to the probability distributions in a behavior model for hundreds or thousands of times to determine an expected solution
 - First extensively studied during the Manhattan project, where it was used to model neutron behavior

How Does Monte Carlo Work?

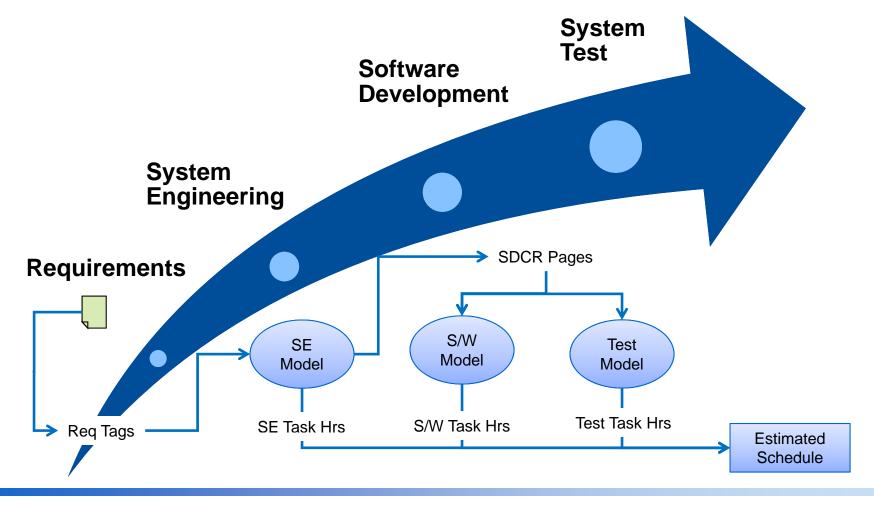
- Monte Carlo Steps
 - **1.** Create a parametric model
 - 2. Generate random inputs
 - **3.** Evaluate the model and store the results
 - 4. Repeat steps 2 and 3 (x-1) more times
 - **5.** Analyze the results of the x runs

This slide provided courtesy of Bob Stoddard from the Software Engineering Institute. Used by permission.



Refined Model Data

OGDEN AIR LOGISTICS COMPLEX


%

Parameters	Coefficients		Inputs	10,000 Trials		Fre	equency View		9,8	60 Displayed
Candidate Name:	Control Manual Bilge					Esti	mated Eff	ort		
Constant		21.8								_
Number of Requirements Tags		Q.0724	123		_ 11					
Est. SDCR Pages			30.7052	0.04 -						400
SDCR Hour/Pages		A A	1.395444							
Estimated SE Effort			42.8474	l ∰ 0.03						- 300 - 1'
				Ari 0.03						- 300 Frequency
				0.01				les.		- 100
				0.00					fhose.	0
					20.00	40.00	60.00 Hours	80.00	100.00	
				Infinity		Certainty	: 75.00	%	56.82	

BE AMERICA'S BEST

7/31/2012

Early Process Findings

'R LOGISTICS COMPLEX

- Collecting the metrics from previous build, compared the calculated effort to the actual effort.
 - Found that for the easier candidates that the level of effort was good.
 - As the requirements became more complex, it was taking more effort that model predicted.
- Determined that more refinement was needed to model.

Continuous Model Refinement

To refine the size of SE work for a release, the following was taken into consideration:

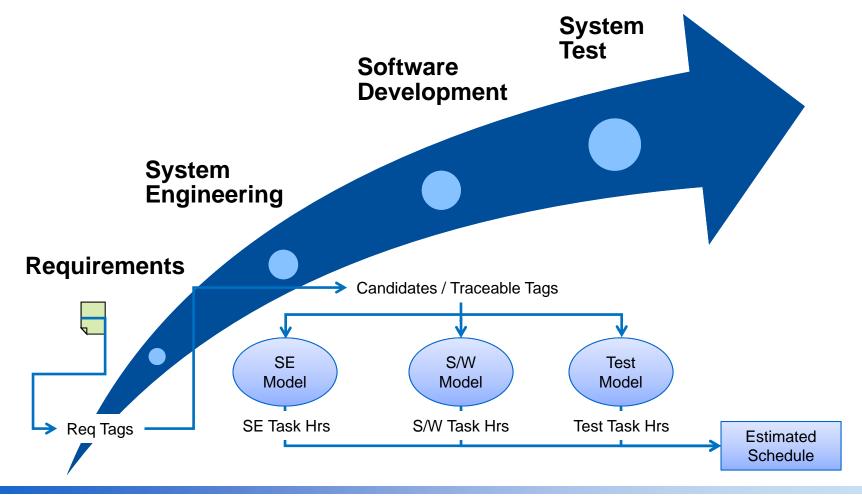
- The number of traceable requirements to be implemented
- The SDCR size based upon the number of requirements to be implemented (range: 1=small to 3=large)
- The maturity of the requirements (range: 1=low to 3= high)
- Complexity of the requirements (range: 1=low to 5=high)

Adjusting for Complexity

- Complexity is Non-linear
 - Data analysis of historical data determined that the complexity factor determined above had a non-linear relationship to the SE Task Hours
 - Using the previous candidates, the new model was applied and the complexity multiplier determined as follows:

Complexity Factor	Complexity Multiplier
1	1
2	0.9375
3	0.875
4	0.8125
5	0.75

Current Model


Using the Complexity Multiplier and the Maturity provided the most accurate Task Hours estimate for SE

Size	Maturity	SE Effort
1	1	(12.5 x 1.5 x 1.5)/Complexity Multiplier
2	1	(12.5 x 2 x 1.5)/Complexity Multiplier
3	1	(12.5 x 2.5 x 1.5)/Complexity Multiplier
N/A*	2	(15 + Number of requirements to implement)/(3.67 X
		Complexity Multiplier)
N/A*	3	(10 + Number of requirements to implement)/(3.67 x
		Complexity Multiplier)

*Size was not a factor for those items with Maturity 2 or 3

7/31/2012

7/31/2012

Development Process Estimates – Task Hours

OGDEN AIR LOGISTICS COMPLEX

- Development Task Hours
 - Development Task Hours were estimated using SE Task Hours
 - Historical data analysis indicated that SE Task Hours had a linear correlation to Software Development Task Hours

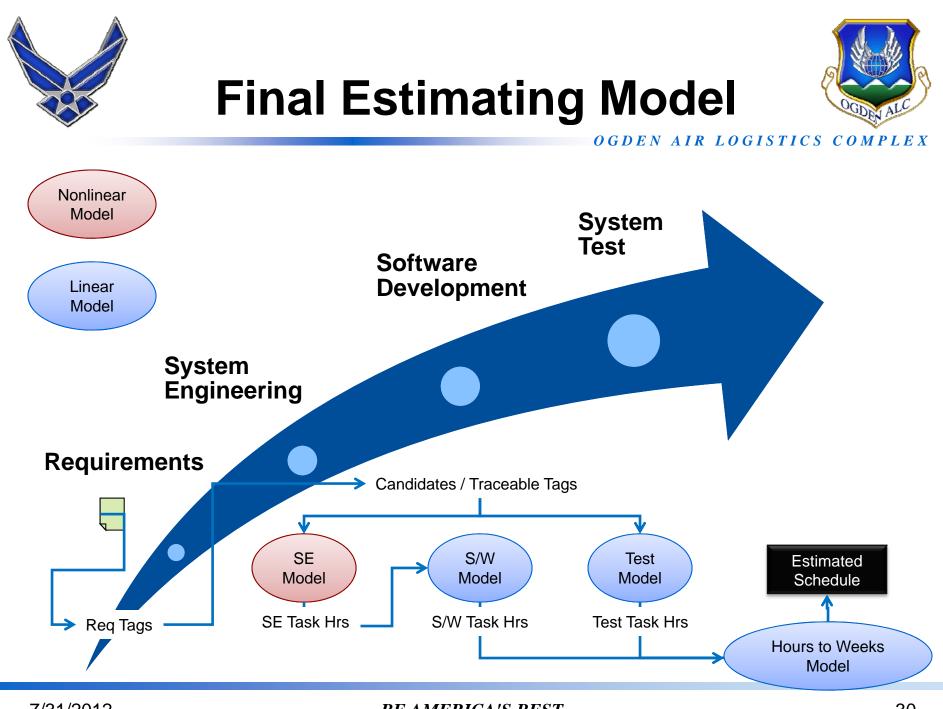
DEV Task Hours = SE Task Hours *(7/3)

System Test Task Hours

- System Test Task Hours were estimated using traceable requirements tags (just like SE)
- Historical data analysis determined a linear relationship using a "complexity multiplier"

ST Task Hours = (((0.12 * Traceable Requirements)/Complexity Multiplier) + 20)

Development Process Estimates – Schedule


OGDEN AIR LOGISTICS COMPLEX

- Schedule Directly Correlated to Task Hours
 - Historical data showed that Task Hours accounted for about 30% of the overall effort
 - Scheduled Person Hours were estimated for each group by adding all the Task Hours for a group and then dividing by 0.3

Scheduled Person Hours = Total Task Hours / 0.3

A simple calculation dividing the resulting Scheduled Person Hours by 40 hours per week per person provided the Schedule Weeks

Schedule Weeks = Scheduled Person Hours / 40

7/31/2012

BE AMERICA'S BEST

Summary

Hill Air Force Base Created a Successful Software Development / Maintenance Estimating Model

- Determined by examining historical data
- Initial model failed
- Iterative refinements improved accuracy
- Effort Estimates Could be Determined Early On
 - Used tagged requirements
 - Linear and nonlinear models with confidence intervals developed
- Schedule Estimates Derived from Effort Estimates

Contact Information

OGDEN AIR LOGISTICS COMPLEX

David R. Webb 309 SMXG 517 Software Maintenance Squadron Hill Air Force Base, Utah 84056 (801) 777-8686 E-mail: david.webb@hill.af.mil

David Jolley 309 SMXG 520 Software Maintenance Squadron Hill Air Force Base, Utah 84056 (801) 777-3823 E-mail: david.jolley@hill.af.mil