

Practical Software and Systems Measurement

Objective Information for Decision Makers

System & Software Architecture Performance Measurement Workshop **31 July 2012**

Paul Kohl – Lockheed Martin Alejandro Bianchi – Liveware IS s.A.

OUTBRIEF

- Cheryl Garrison
- Gary Roedler
- Greg Nieman
- Paul Kohl
- Alejandro Bianchi
- Kim Angstadt
- Richard Mabe

• Outgrowth of a NDIA/PSM study¹

- Identify a set of leading indicators that provide insight into technical performance
- Build upon objective measures in common practice in industry, government, and accepted standards.
- Select <u>objective measures based on essential attributes</u> (e.g., relevance, completeness, timeliness, simplicity, cost effectiveness, repeatability, and accuracy).
- Measures should be commonly and readily available
- Results published as <u>NDIA System Development Performance</u> <u>Measurement Report</u>, December 2011
- Architecture was a high priority area but no indicators were identified that met criteria
- This is an attempt to define measures that can become the leading indicators
 - Introduce them into common practice
 - Using means that are easy to implement

- Reviewed information needs or program / project managers
- Reviewed measurable concepts
- Voted on potential base measures
- Discussed relationships between program level base measures and enterprise needs
 - ROI related enterprise needs
 - Architecture initiatives and how to measure change at the program levels to measure architecture value
- Discussed a potential suite of measures for use on programs

Copyright Lockheed Martin 2012

Conclusions, Recommendations, and Results

- Conclusion:
 - Architecture is measurable at the program / project level
- Result:
 - The Workshop resulted in the consensus that architecture is measureable
 - A preferred set of base measures was voted on and is being integrated into ICTM tables
- Recommended:
 - Complete the ICTM tables and define the resulting indicators

- Size
 - Number of elements
 - Number of relationships/interfaces (external)
 - Number of requirements
 - Number of mission / system scenarios / use cases
 - Number of artifacts produced
 - Number Data points
 - Number of Function points
 - Number of Use Case points

• Complexity

- Number of relationships/interfaces (internal & external)
- Number of interactions
- Number of functions/methods
- Number of states

- Completeness
 - Requirements satisfied addressed
 - Artifacts produced
 - Artifacts total expected
- Quality of Solution
 - Number of defects in the baseline
 - Degree of requirements satisfaction
 - Degree of coupling
 - Degree of "pick an 'ility"
 - Cost of the solution (@some confidence level)
 - # of open TBx
- Quality of representation
 - Number of defects
 - Degree of consistency of representation*
 - Degree of standards compliance

- Define the indicators using the base measures
- Coordinate with the ISO/IEC/IEEE 42030 effort

System & Software Architecture Performance Measurement

WORKSHOP DESCRIPTION

Copyright Lockheed Martin 2012

- Identify the key attributes of architecture to be measured
- Define a <u>set</u> of architecture measures that provide insight into the architecture
 - Support program leadership needs for leading indicators
 - Are quantitative
 - Are readily obtainable
 - Base and/or composite (derived)
- Recommend means/methods for obtaining the measures
 - Modeling tools
 - Requirement tools
 - Outputs from related processes

• Fill in the PSM template for the measures

BACKGROUND

Copyright Lockheed Martin 2012

• Outgrowth of a NDIA/PSM study¹

- Identify a set of leading indicators that provide insight into technical performance
- Build upon objective measures in common practice in industry, government, and accepted standards.
- Select <u>objective measures based on essential attributes</u> (e.g., relevance, completeness, timeliness, simplicity, cost effectiveness, repeatability, and accuracy).
- Measures should be commonly and readily available
- Results published as <u>NDIA System Development Performance</u> <u>Measurement Report</u>, December 2011
- Architecture was a high priority area but no indicators were identified that met criteria
- This is an attempt to define measures that can become the leading indicators
 - Introduce them into common practice
 - Using means that are easy to implement

Program Manager Leading Indicator Needs

- Does the architecture provide the <u>right</u> solution to the problem and does it meet all the requirements?
 - Best (or at least sufficient) architecture
 - Requirements Traceability
- Is the architecture going to be done on time?
 - Progress/Complete
 - Stability
- Will the architecture be low in defects?
 - No missing data
 - Entered data is correct
 - Data is consistent between artifacts and/or system elements?

- **Process efficiency**
- Can the process be done better to reduce cost or improve quality?
- Size / Complexity
 - How big and/or complex is the architecture effort so I can compare to other efforts?

Cost

- What was the Total effort?
- What effort was required for each task / system element/ artifact?

- Enterprise type metrics related to architecture
 - Process efficiency
 - ROI in architecture
 - Market Share (meeting customer/stakeholder needs)
- Need to identify base measures of architectures that can support the above

- <u>Set</u> of architecture measures that provide insight into the architecture
- Supporting Draft PSM Templates

Time permitting –

- Recommend means/methods for obtaining the measures
 - Modeling tools
 - Requirement tools
 - Outputs from related processes

- Presentation of initial recommendations for:
 - Key architecture attributes
 - Candidate Base Measures
 - Candidate Measures Set
- General Discussion
 - Flip Chart data collection
- Multi-voting / rating of Base Measures
- Multi-voting / rating of Set contents
- General Discussion of means of obtaining measures
 - Flip Chart data collection

Discussion Topics **KEY ARCHITECTURE ATTRIBUTES**

Potential Key Attributes (i.e. Measurable Concepts)

- Size
- Complexity
- Degree of completeness
- Quality of solution
- Quality of representation
- Cost or effort of the architecture

Discussion Topics POTENTIAL BASE MEASURES

- Size
 - Number of elements
 - Number of relationships/interfaces (external)
 - Number of requirements
 - Number of mission / system scenarios / use cases
 - Number of artifacts produced
 - Number Data points
 - Number of Function points
 - Number of Use Case points

• Complexity

- Number of relationships/interfaces (internal & external)
- Number of interactions
- Number of functions/methods
- Number of states

- Completeness
 - Requirements satisfied addressed
 - Artifacts produced
 - Artifacts total expected
- Quality of Solution
 - Number of defects in the baseline
 - Degree of requirements satisfaction
 - Degree of coupling
 - Degree of "pick an 'ility"
 - Cost of the solution (@some confidence level)
 - # of open TBx
- Quality of representation
 - Number of defects
 - Degree of consistency of representation*
 - Degree of standards compliance

Discussion Topics **A MODEST PROPOSAL** A BASIC ARCHITECTURE MEASUREMENT SUITE

Measures by Attribute – Size

- Known at program or architecture initiation
 - Number of Mission Scenarios
 - Number of External Interfaces
 - Number of requirements
- Calculated from above and initial architecture effort
 - Estimated Number of Scenarios for each level of decomposition (i.e. OV-6c or SV-10c equivalents) & associated diagrams needed
 - Number of architecture elements at each level of decomposition & associated diagrams
- Captured / reported from architecture tools
 - Number of objects on diagrams / artifacts
 - Number of data elements / fields associated with artifacts and objects
 - Number of artifacts by type

- Known at program or architecture initiation
 - Number of external interfaces
- Calculated from above and initial architecture effort
 - Number of relationships/interfaces at each level of decomposition
 - Number of states for each architecture element
- Captured / reported from architecture tools
 - Number of classes / objects
 - Number of functions/methods
 - Number of interactions
 - Number of functional requirements traced to an architecture element or artifact (e.g. scenario)

Measures by Attribute – **Completeness**

- Known at program or architecture initiation
 - Size Measures
 - Number of {Size Measure} complete
 - % of {Size Measure} complete or at a given approval state Calculated from above and initial architecture effort
- - Size Measures
 - Number of {Size Measure} complete
 - % of {Size Measure} complete or at a given approval state
- Captured / reported from architecture tools
 - Size Measures
 - Empty required data fields
 - Number of {Size Measure} complete
 - % of {Size Measure} complete or at a given approval state
 Quantity and trend (of closure) of empty required data fields
 - (definition of required will change by milestone)
 - Number of functional requirements traced to an architecture element or artifact (e.g. scenario)
 - % of functional requirements traced to an architecture element or artifact (e.g. scenario)
 - Number & trend of closure of architecture TBx
 - Number & trend of closure of requirement TBx

Measures by Attribute – Quality of Representation

- Known at program or architecture initiation
 - N/A
- Calculated from above and initial architecture effort
 - Existence of Architecture Practices Standards and Conventions (APS&C)
- Captured / reported from architecture or process tools
 - # of Defects in <u>baselined</u> artifacts
 - External standards compliance
 - Consistency of representation (i.e. adherence to APS&C)
 - Quantity and trend (of closure) of empty required data fields (definition of required will change by milestone)
 - Stability of architecture artifacts (number of changes across time)

Measures by Attribute – Quality of Solution

- Known at program or architecture initiation
 - N/A
- Calculated from above and initial architecture effort
 - Existence of a documented architecture concept (AV-1)
- Captured / reported from architecture or other tools
 - # of Defects in <u>baselined</u> artifacts
 - Solution error (e.g. doesn't work)
 - Number of functional requirements traced to an architecture element or artifact (e.g. scenario)
 - % of functional requirements traced to an architecture element or artifact (e.g. scenario)
 - Number & trend of clósure of architecture TBx
 - Number & trend of closure of requirement TBx
 - Degree of TPM satisfaction based on modeling or other method
 - Degree of satisfaction of 'ilities (could be based on checklist or other tools
 - Stability of architecture artifacts (number of changes across time)
- Reviewer comments
 - Design Assessments before or at milestones

• Known at program initiation

- Size Measures
- Skill Mix / Experience levels
- Labor Rates
- Estimated Productivity
- Calculated from above and initial architecture effort
 - Size Measures
 - Updated Productivity Estimate
- Captured / reported from architecture or process tools
 - Size Measures
 - Experienced Productivity
 - CPI/SPI
 - Estimate at Completion (EAC)

