
University of Southern California
Center for Systems and Software Engineering

Estimating the Cost of Securing 
Software Applications

Brad Clark, PhD
18th Practical Software and Systems

Measurement Users’ Group Meeting and Workshops
June 14, 2017



University of Southern California
Center for Systems and Software Engineering

Abstract
• Making software applications secure from intrusion, corruption, 

attack, denial of service and other things is challenging. Does it 
really cost more to make software secure?

• This talk will discuss what it means to make software secure and 
where it might cost more to implement security measures.

• The COCOMO model is used to discuss costs associated with 
making software secure.

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 2



University of Southern California
Center for Systems and Software Engineering

Topics
• Why Software Security
• Supply Chain Management Impact
• Examples of Software Weaknesses
• Software Component Security Requirements
• Software Development Security Requirements
• Follow-on Workshop Objectives

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 3



University of Southern California
Center for Systems and Software Engineering

Why is Software Security Important?
• There have been dramatic increases in business and mission 

risks attributable to exploitable software
• Software vulnerabilities jeopardize 

– intellectual property
– consumer trust
– business operations and services
– broad spectrum of critical infrastructures (including everything from 

process control systems to commercial software products)
• Recent examples:

– North Korean secret cyber unit 'likely behind' NSA ransomware 
attacks

– Foreign hackers 'may have hit voter site days before referendum’
– US child hacker launches cyber attack on Brussels Airport
– Penthouse and Adult Friend Finder hack leaves over 412 million 

exposed… Oops

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 4



University of Southern California
Center for Systems and Software Engineering

Is It Worth It?
• How much additional effort (cost) does it take to develop secure 

software considering the impact of:
– Security requirements for software

• Levels of security
– Implementation expertise
– Testing independence
– Process and tool support
– Platform constraints and configurations (volatility)

• Two cost aspects:
– Component security requirements

• Software applications
• Embedded devices
• Host devices
• Network components

– Management of a secure development
14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 5



University of Southern California
Center for Systems and Software Engineering

Non-Functional Requirement Tensions

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 6

• Functional requirements specify the work for which the system is 
intended

• Non-Functional requirements pertain to the functions of the system
• There is a tradeoff between Security and other Non-Functional req’ts

Security

Safety

Availability

Interoperability

Modifiability
Performance

Testability

Usability

Portability

Scalability

Reliability



University of Southern California
Center for Systems and Software Engineering

Application Development Context

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 7

Product
Supplier Software

Applications
Embedded

Devices
Network

Components
Host

Devices

Product

develops

Asset
Owner

Operational and Maintenance capabilities
(policies & procedures)

operates +

System
Integrator Subsystem-1 Subsystem-2 Complementary

HW & SW

Automated Solution

integrates

…

Source: ISA-62443-4-1 Secure Product Development Lifecycle Requirements



University of Southern California
Center for Systems and Software Engineering

Development Supply Chain Context

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 8

Asset
Owner

System 
Integrator

Product 
Supplier

Reused
Software

In-House 
Software

Acquired or 
Outsourced

Custom
Software

COTS 
Software

COTS 
Supplier

Reused
Software

In-House 
Software

?

?

? ?

? ?

What security was 
implemented in the 
software down-line from 
the acquired product?

? ?

?

?

?

?

Source: adapted from DHS, “Software Assurance in Acquisition and Contract Language”

Defense in Depth is a design concept 
that attempts to address this issue.

Platform
• Embedded
• Network
• Hosted



University of Southern California
Center for Systems and Software Engineering

Examples of
Weaknesses Introduced During Design

• Acceptance of Extraneous Untrusted Data With Trusted Data
• Access to Critical Private Variable via Public Method
• Addition of Data Structure Sentinels, e.g. null character at the end 

of strings
• Algorithmic Complexity
• Allocation of File Descriptors or Handles

Without Limits or Throttling
• Allocation of Resources Without Limits or

Throttling
• Incorrect Control Flow Implementation
• Apple '.DS_Store’
• Argument Injection or Modification
• ASP.NET Misconfiguration: Not Using Input Validation Framework
• Asymmetric Resource Consumption (consume more resources 

than the access level permits)
–

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 9

Source: Mitre-CWE, Common Weakness Enumeration A Community-Developed List of Software Weakness Types



University of Southern California
Center for Systems and Software Engineering

Weaknesses in the 2011 CWE/SANS Top 25 
Most Dangerous Software Errors Examples

• Cross-Site Request Forgery (CSRF)
– Improper Neutralization of Input During Web Page Generation 

('Cross-site Scripting’)
– Improper Neutralization of Special Elements used in an OS 

Command ('OS Command Injection’)
– Improper Neutralization of Special Elements used in an SQL 

Command ('SQL Injection’)
• Porous Defenses

– Execution with Unnecessary Privileges
– Improper Restriction of Excessive 

Authentication Attempts
– Incorrect Authorization
– Incorrect Permission Assignment for 

Critical Resource
– …

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 10



University of Southern California
Center for Systems and Software Engineering

Examples of
Weaknesses in SW Written in C++

• Access of Resource Using Incompatible Type ('Type Confusion’)
• Access to Critical Private Variable via Public Method
• Base Addition of Data Structure Sentinel
• Assignment of a Fixed Address to a Pointer
• Buffer Access with Incorrect Length Value
• Base Buffer Copy without Checking Size of Input ('Classic Buffer 

Overflow’)
• Buffer Underwrite ('Buffer Underflow’)
• Cloneable Class Containing Sensitive Information
• Compiler Optimization Removal or Modification of

Security-critical Code
– …

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 11



University of Southern California
Center for Systems and Software Engineering

Software Security Requirements
• What are examples of security requirements for software?
• Many security resources discuss security policy
• In this presentation, one set of requirements was selected to 

provide insight:
– ISA‐62443‐4‐2 Security for Industrial Automation And Control 

Systems Technical Security Requirements for IACS Components

– ISA: International Society of Automation
– IACS: Industrial automation and control system 

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 12



University of Southern California
Center for Systems and Software Engineering

Security Requirements for
Software Components -1

1. Identification and 
authentication control
1. Identification and 

authentication control
Human user identification and 

authentication

Software process and device 
identification and authentication

Account management

Identifier management

Authentication management …

2. Use control2. Use control

Authorization enforcement

Wireless control

Use control for portable and 
mobile devices

Session lock

Remote session termination …

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 13
Source: ISA-62443-4-2 Technical Security Requirements for IACS Components



University of Southern California
Center for Systems and Software Engineering

Security Requirements for
Software Components -2

3. System 
integrity

3. System 
integrity
Communication 

integrity

Malicious code 
protection

Software and 
information integrity

Input validation

Error handling …

4. Data 
confidentially

4. Data 
confidentially

Information 
confidentiality

Information 
persistence

Use of cryptography

5. Restricted 
data flow

5. Restricted 
data flow

Network 
segmentation

Zone boundary 
protection

Person-to-Person 
communication 

restrictions

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 14



University of Southern California
Center for Systems and Software Engineering

Security Requirements for
Software Components -3

6. Timely response 
to events

6. Timely response 
to events

Audit log accessibility

Continuous monitoring

7. Resource 
availability

7. Resource 
availability

Denial of service protection

Resource management

Control system backup, recovery 
and reconstitution

Network and security 
configuration settings

Least functionality

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 15



University of Southern California
Center for Systems and Software Engineering

Component Security Levels

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 16

• The seven security requirements shown previously have four 
Security Levels (SL).

• Identify and authenticate all users (humans, software processes 
and devices) by mechanisms that

Source: ISA-62443-4-2 Technical Security Requirements for IACS Components

SL-1 – Protect against casual or coincidental access by unauthenticated entities.

SL-2 – Protect against intentional unauthenticated access by entities using simple 
means with low resources, generic skills and low motivation

SL-3 – Protect against intentional unauthenticated access by entities using 
sophisticated means with moderate resources

SL-4 - Protect against intentional unauthenticated access by entities using 
sophisticated means with extended resources



University of Southern California
Center for Systems and Software Engineering

Impact of Component Security 
Requirements on Development Effort

• More requirements affect software effort (cost) by increasing the 
functionality (or size) to be implemented in the software

• The four security levels shown previously increase the amount of 
functionality (and size) and therefore effort

• The amount of effort required, directly related to the amount of 
functionality, is influenced by other factors such as
– Product Factors (e.g. complexity, reliability)
– Personnel Factors (capabilities, experience)
– Platform Factors (e.g. constraints, volatility)
– Project Factors (e.g. precedentedness, risk resolution, process 

capability, development flexibility, tools)

• These are addressed next

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 17



University of Southern California
Center for Systems and Software Engineering

Secure Development Lifecycle -1
• Security management

– Identification of responsibilities
– Security expertise
– Code signing
– Development environment security
– 3rd party embedded component security
– Process verification

• Specification of security requirements
– Product security requirements (authentication, authorization, 

encryption, auditing and other security capabilities)
– Product security context (product’s intended operating environment 

including physical environment)
– Threat model (analysis that identifies potential security issues and 

how they will be addressed)
– Security requirements review

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 18
Source: ISA-62443-4-1 Secure Product Development Lifecycle Requirements



University of Southern California
Center for Systems and Software Engineering

Secure Development Lifecycle -2
• Secure by design

– Secure design principles
– Defense in depth design (layers of security)
– Security design review
– Assessing & addressing security-related issues

• Secure implementation
– Security implementation review
– Assessing & addressing security-related issues

• Security verification and validation testing
– Security requirements testing
– Threat mitigation testing
– General vulnerability testing
– Penetration testing

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 19



University of Southern California
Center for Systems and Software Engineering

Secure Development Lifecycle -3
• Security defect management

– Receiving notifications of security-related issues
– Reviewing security-related issues
– Assessing & addressing security-related issues
– Disclosing security-related issues

• Security update management
– Dependent component or operating system security update 

documentation 
– Security update delivery 
– Timely delivery of security patches 

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 20



University of Southern California
Center for Systems and Software Engineering

Conclusions
• Software component security requirements affect the amount of 

functionality
• Software development security requirements affect the 

productivity of the work

• Security Levels affect both the
– Amount of functionality, e.g. more software to be developed
– Amount of development tasks, e.g. increased reviews, testing, audits

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 21



University of Southern California
Center for Systems and Software Engineering

COCOMO III Workshop
• Title: Implementing a New Driver for Software Security
• Facilitator: Brad Clark, USC Center for Systems and Software 

Engineering
• Prerequisites: An understanding of how a software cost estimation model 

is used in creating software development cost estimates. Knowledge of 
the COCOMO II Software Cost Estimation Model would be helpful but not 
absolutely necessary.

• Discussion: This workshop will begin with a brief overview of the 
COCOMO III project and the proposed cost estimation model. 
The main purpose of the workshop and the majority of time will be spent 
discussing how the cost for software component security requirements 
and development security requirements should be accommodated in the 
COCOMO III model.

• Goals/Products: A draft on how to estimate Required Software Security in 
COCOMO III and the associated driver’s productivity range

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 22



University of Southern California
Center for Systems and Software Engineering

Glossary
• CWE: Common Weakness Enumeration 
• ISA: International Society of Automation
• IACS: Industrial Automation And Control System 
• Vulnerability: A vulnerability is a software weakness that can be 

exploited by an attacker. Bugs and flaws collectively form the 
basis of most software vulnerabilities. 

• Weakness: A weakness is an underlying condition or construct 
existing in a software system that has the potential for negatively 
impacting the security of the system.

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 23



University of Southern California
Center for Systems and Software Engineering

Resources
• ISA-62443-4-1, “Secure Product Development Lifecycle 

Requirements,” Security for Industrial Automation and Control 
Systems, Draft 3, Edit 11, March 2016

• ISA-62443-4-2, “Technical Security Requirements for IACS 
Components,” Security for Industrial Automation and Control 
Systems, Draft 2, Edit 4, July 2, 2015

• Mitre-CWE, Common Weakness Enumeration A Community-
Developed List of Software Weakness Types, 
http://cwe.mitre.org/data/index.html, accessed May 2017

• DHS, “Software Assurance in Acquisition and Contract 
Language,” Software Assurance Pocket Guide Series, Vol 1, Ver 
1.2, May 2012

14 June 2017 Brad Clark - 18th PSM User's Group - ©2017 USC-CSSE 24


