
ODNI

EC/SRA CA 1

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

Overall Classification

Estimating SW Costs from
Requirements using

Objective Function Points
Research

August 2019

UNCLASSIFIED

ODNI

EC/SRA CA 2

• From the Congressional Notification: Data Science Tradecraft and Standards
Initiative:
‒ `“This initiative, in concert with ODNI’s Augmenting Intelligence Using Machines

(AIM) Strategy, will ensure we maintain the IC’s high standards and preserve
confidence in the analytic processes as we increase the use of machines and automated
methods”

• ODNI is collaborating with community on developing more effective/accurate
cost/schedule software estimation using automated methods
‒ Investigating alternatives to estimating Software (SW) via Source Lines Of Code

(SLOC) counting, by exploring alternative estimating methods using Function Points
(FP) for estimating SW development efforts

» This drove the need for automated methods to count/capture FPs
» Similar to the UCC standards in SLOC counting where tool would be Open Source

‒ This effort focused the IC to initiate an Objective Function Point (OFP) Counting
capability into the government managed tool suite (UCC-G) that is requested for each
IC MSA program acquisition via CDRL

» Automatically calculating OFP’s based on International Function Point User Group (IFPUG)
documented standards
 Currently analyzes C, C++, C#, Java and Java Script languages

Overview

ODNI

EC/SRA CA 3

What are Objective Function Points (OFPs)?

• Developing an Automated Objective Function Point Counter
‒ Developing a standard automated approach to counting OFPs to avoid

subjective estimates
» Standard Function Points (FP) require Function Point experts to derive
» Used UCC tool baseline since it already parses through most SW languages and is

Open Source
‒ Current Function Point estimates use IFPUG tables such as:

‒ OFPs capture the sizing needed to assess the effort and are based from the
IFPUG weights
» Cyclomatic Complexity determines which IFPUG table to use

ODNI

EC/SRA CA 4

• To test the OFPs, we used NASA’s
General Missions Analysis Tool (GMAT)
software
‒ Open Source code

• To calculate the OFPs from GMAT code,
we can pull out the following data:
‒ The Cyclomatic Complexity shows that

most of the GMAT code falls less than 10
‒ This will drive the OFPs to be the lowest

values from the IFPUG tables

• Things to consider on OFPs:
‒ OFPs are derived from the actual source

code
‒ Every Function gets an OFP associated to

it
‒ There are more developed Functions in the

code than what the Function Point experts
can predict

‒ This will lead to higher OFPs than FPs
» Assuming FPs were generated from

requirements by an FP expert

Complexity Mapping to OFPs

ODNI

EC/SRA CA 5

OFPs and Requirements
• 5 Different small test cases were performed with a FP expert

‒ FP Expert was provided in all cases UML Sequence and Class Model diagrams
‒ All 5 cases had less than a 10% error between the automated OFPs and the predicted

FPs

• This led to a large test case using a subset of the GMAT Formal SW Requirements
document
‒ The GMAT Formal SW Requirements document is composed of:

» Application Control, Resource and Command Objects Functional Requirements
» External Interface, Environmental, Computer Resource and Test System Requirements

‒ INITIAL TEST: Using a subset of the GMAT requirements document (see backup
slide for details), the FP expert calculated FPs that showed ~ 200% error from the
OFPs

‒ FINAL TEST: After providing the FP expert the Unified Modeling Language (UML)
documentation, the FP expert calculated FPs that showed ~ 2% error from the OFPs

• This shows the Uncertainty of estimates are due to the Maturity of the
Requirements provided to the estimator
‒ Phase A requirements are being refined/defined/matured while some are not specified

until the end of Phase B
‒ As the requirements get more mature, the Uncertainty of the estimate will go down

ODNI

EC/SRA CA 6

Using OFPs to Capture Effort

• OFPs capture the total effort of a baseline as though it was ALL NEW code
• How do we use these if we are trying to capture the effort between baselines or in

AGILE’s case “Sprints” or “Increments”?
‒ We needed a new metric that can utilize the UCC DIFF capabilities

• Created a measure to capture development called Effective Objective Function Points
(EOFPs)
‒ EOFPs are computed by comparing the source code of two baselines
‒ After the code is divided into modules / classes or each code baseline, the code is compared and

the number of ADDED, MODIFIED and DELETED Logical Source Lines Of Code (LSLOC) is
determined for each function within each module

‒ For each function, the number of ADDED + MODIFIED lines (as a percentage of total lines) is
multiplied by the OFP to determine the EOFP for that function.

‒ The EOFP for the module is simply the sum of the EOFP for all functions

ODNI

EC/SRA CA 7

NASA’s General Missions Analysis Tool (GMAT) Example

• Results from comparison between GMAT C++
code baselines 2017a and 2018a

• Here are some high level GMAT metrics:
‒ Total # EOFPs = 3,023.3
‒ # Changed/New Modules = 211
‒ # Changed/New Functions = 1,473
‒ EOFPs / (Changed/New Modules) = 14.33
‒ EOFPs / (Changed/New Functions) = 2.05
‒ (Changed/New Functions)/(Changed/New

Modules) = 6.98

7

2017a 2018a
Physical Source Lines Of Code (PSLOC) 457,112 535,661
Logical Source Lines Of Code (LSLOC) 290,674 318,173

Delta LSLOC
Modules (Classes) 3,104 3,191
OFPs 70,953 74,099

Delta OFPs

NEW LSLOC
DELETED LSLOC
MODIFIED LSLOC
UNMODIFIED LSLOC

EOFPS 3,023.3

27,499

3,146

9.3%
1.0%
0.7%
89.0%

DIFF Results

• Other potential metrics:
‒ EOFPs / Hours
‒ LSLOC / Function

» Previous UCC counter reported by file and
NOT by Function

‒ Objective Maintainability Index
» GMAT = 135.67 High Maintainability

85 and more: good maintainability
65-85: moderate maintainability
under 65: difficult to maintain

bad pieces of code (big, uncommented,
unstructured) the MI value can be even negative

Maintainability Index

We are opening the door to new metrics to estimate effort

ODNI

EC/SRA CA 8

Potential of Using Requirements Documents
• Software Requirement Documents contain nouns and verbs

‒ Object Oriented Theory:
» Nouns become Modules/Classes
» Verbs become Process Functions

• Using Natural Language Toolkit (NLTK) to automatically extract nouns and verbs
» This is free open source on the unclass and class side

• NLTK parses out the nouns and verbs from the requirements very well
• In order to identify key words that correlate to effort, we need to calculate weights for the

nouns and verbs
‒ These weights would be derived by scoring them against the rest of the requirement document

• Due to long runtime with NLTK algorithms when scoring, we investigated using Lucene
in place of NLTK to compute Scoring between Module / Class names and individual
requirements
‒ Lucene combines Boolean model (BM) of Information Retrieval with Vector Space Model

(VSM) of Information Retrieval - documents "approved" by BM are scored by VSM
‒ Lucene is open source available on high and low side
‒ Calibrated Lucene Scoring model to properly map Key Words to Requirements

» Calibration involved many hours of many different test cases and individually comparing results

• Runtime of Lucene Scoring outperformed NLTK Scoring

ODNI

EC/SRA CA 9

• How can we use the Scoring of Nouns and Verbs to help estimate the number of Functions?
‒ Following the basic principle from Object Oriented Analysis:

» Nouns are potential Modules (classes)

• By using the Scores from the Unique Nouns, we could estimate the number of Modules
(Classes)
‒ The # of Unique Nouns equals the # of Modules (Classes) when:

» Score of 3 or more (see plot of right)
» As previously noted, there are 211 GMAT Module (Classes)

• # Functions currently do not trend to Unique Verbs
‒ Verbs such as “Get or “Set” are used many times
‒ Requires more research

• As previously noted, there are 6.98 Functions per Module (Class) in GMAT
‒ Currently observing other programs in this range (6 – 7)
‒ Multiplying the 211 Total Changed and New Modules by 6.98, we get 1473 GMAT Functions

• Next challenge is to convert to EOFPs
‒ As previously noted, there are 2.05 EOFPs/ Total Changed and New Functions in GMAT

» Currently observing other programs in this range (2 – 3)
‒ Total Estimated EOFPs = 2.05 * 1473 = 3,019.7
‒ Total UCC EOFPs = 3,023.3

What can we do with Scoring?

ODNI

EC/SRA CA 10

• This Monte Carlo approach provides a Risk Range for the estimate
‒ If Story Points are available from data collection efforts, the Story Points map to each requirement

where each EOFP maps to Code
» Story Points are a subjective means in Agile to relate size to effort

‒ If Story Points are NOT available, subjectively map each requirement to the Code Functionality

• Challenge has always been correlating requirements to Function Points
• Scoring paves the way for Monte Carlo approach to correlate requirements to Function

Points

• This allows Automapping between Code to Requirements
‒ Each requirement can now map to a section of Code as well as EOFPs
‒ Thus producing ranges for each requirement

• This bounds the estimate with ranges from the Monte Carlo simulation runs

Estimating Risk from Requirements

Effective Objective
Function Points (EOFPs)
from the Modules
(Classes) and Methods
(Functions)

AGILE development
Story Points which
relate to Requirements

SCORING

ODNI

EC/SRA CA 11

Read in Reqts

Use NLTK to
parse nouns

and verbs

Use Lucene to
score each
noun, verb

Use Hypothesis
to estimate #

Functions

Use
Relationships to

estimate #
EOFPs

Summary of Sizing Estimating Process

Read in
Reqts

Use NLTK
to parse

nouns and
verbs

Use Lucene
to score

each REQT

Run OFP
UCC and

Map Reqts
to Classes

Run Monte
Carlo sim

RISK

GMAT FEATURE: The Ground Station object supports a
new troposphere model, the Marini model, matching the
implementation used in GTDS. One operational advantage
of the Marini model is that it doesn’t require input of
weather data at the Ground station. (Models that do
accept weather data may have more accuracy.)

GMAT FEATURE: The Ground Station object supports a
new troposphere model, the Marini model, matching the
implementation used in GTDS. One operational advantage
of the Marini model is that it doesn’t require input of
weather data at the Ground station. (Models that do
accept weather data may have more accuracy.)

GMAT FEATURE: The Ground Station object supports a
new troposphere model, the Marini model, matching the
implementation used in GTDS. One operational advantage
of the Marini model is that it doesn’t require input of
weather data at the Ground station. (Models that do
accept weather data may have more accuracy.)

Y=Xb+c

Y=Xb+c

ODNI

EC/SRA CA 12

• Accomplishments:
1. Need an Automated and Objective method to capture sizing

Objective Function Point (OFP) tool provides this solution
2. Need an Automated method to pull nouns and verbs from Requirement documents

NLTK tool provides this solution
3. Need to Correlate code to Requirement descriptions

Lucene Scoring tool provides a quick solution for each word combination
4. Need to isolate specific development to specific SW Requirements

OFP DIFF tool isolates the development that relates to stories/specific Requirements
5. Need to capture new Sizing metric to relate specific development to specific Requirements

OFP DIFF tool now reports Effective OFPs (EOFPs)
6. Need to Map Code to Requirements

Built a Mapping tool to read in Classes and Methods/Functions and map them to Requirements
7. Need to estimate EOFPs based from specific Requirements

Investigating various hypotheses that will provide confidence in estimating EOFPs
8. Need to convert EOFPs to hours
9. Need to collect more program baselines

Overview of Accomplishments

√

√

√

√

√

√

√

ODNI

EC/SRA CA 13

POCs

• Govt POC: Michal Bohn MICHALB6@dni.gov
• Presenter: Paul Cymerman pcymerman@quaternion-consulting.com

13

mailto:MICHALB6@dni.gov
mailto:pcymerman@quaternion-consulting.com

ODNI

EC/SRA CA 14

BACKUP

BACKUP

ODNI

EC/SRA CA 15

GMAT Requirements for Unit Level Testing
15

ODNI

EC/SRA CA 16

• Parse source code for relevant metrics:
‒ Modules (classes, or file names for non-OO code and code outside of classes)

» Class inheritance
» Associations between modules

‒ Methods / Functions
» Cyclomatic Complexity

‒ Attributes (class level variables)
• Cyclomatic Complexity for each method / function is used to determine a which OFP table to use

(EI, EO/EQ, ELF, ILF)
‒ Complexity < 11 = EI table
‒ Complexity < 21 = EO/EQ table
‒ Complexity < 41 = ELF table
‒ Complexity >= 41 = ILF table

• Use metrics gathered in step 1 to determine which row to choose in the OFP table
‒ Class Inheritances (+1) corresponds to OFP RET (Record Element Type)
‒ Class Associations correspond to OFP FTR (File Type Reference)
‒ Class Attributes correspond to OFP DET (Data Element Type)
‒ The number of inheritances, associations, and attributes for a module tells us which row to select in the

OFP tables.
» The average of the RET/DET and FTR/DET ratios gives us a low, average, or high risk, corresponding to

the three rows in each OFP table, so we simply use that knowledge to pick the FP number from our selected
table

• Now we have an Objective Function Point number for each method/function. Total them all
together and we have the OFP for the source code

Objective Function Point Counting Process on Existing Source Code

ODNI

EC/SRA CA 17

Determine Function Point Complexity

• To account for the interfaces in the design of the
code, Function Point Theory captures these
interfaces through 5 different pieces of data:

1. External Input (EI): Functions that move data
into the application without presenting data
manipulation.

2. External Output (EO): Functions that move data
to user and presents some data manipulation.

3. External Inquiries (EQ): Functions that move
data to user without presenting data
manipulation.

4. Internal Logical Files (ILF): The logic in the
form of fixed data managed by the application
using External Input (EI)

5. External Interface Files (EIF): The logic in the
form of fixed data used by the application but did
not run in it

• Based on the 5 above types and the calculated
RET, FTR and DET, the Complexity value can be
attained by using the look-up tables on the right

» These are standard IFPUG tables

(Shared table EIF)

ODNI

EC/SRA CA 18

Cyclomatic Complexity Approach

• UCC already collects Cyclomatic Complexity (CC)

• Objective Function Point (OFP) uses CC as a proxy for the complexity-related inputs to Function
Point calculations

M
o
r
e

C
o
m
p
l
e
x

ODNI

EC/SRA CA 19

Simple Example
19

• Run counter on a small program that has only 2 Classes resulting in 2 files
• File 1 has 2 Methods/Functions
• File 2 has 1 Method/Function
• Below are results from the Function Point tool:

‒ Where:
» RET: Record Element Type
» FTR: File Type Reference
» DET: Data Element Type
» CC: Cyclomatic Complexity
» OFP: Objective Function Points

	Estimating SW Costs from Requirements using Objective Function Points Research
	Overview
	What are Objective Function Points (OFPs)?
	Complexity Mapping to OFPs
	OFPs and Requirements
	Using OFPs to Capture Effort
	NASA’s General Missions Analysis Tool (GMAT) Example
	Potential of Using Requirements Documents
	What can we do with Scoring?
	Estimating Risk from Requirements
	Summary of Sizing Estimating Process
	Overview of Accomplishments
	POCs
	BACKUP
	GMAT Requirements for Unit Level Testing
	Objective Function Point Counting Process on Existing Source Code
	Determine Function Point Complexity
	Cyclomatic Complexity Approach
	Simple Example

