Estimating SW Costs from
Requirements using
Objective Function Points
Research

Overall Classification

UNCLASSIFIED

August 2019

ODNI

Overview

* From the Congressional Notification: Data Science Tradecraft and Standards
Initiative:
— “This initiative, in concert with ODNI s Augmenting Intelligence Using Machines
(AIM) Strategy, will ensure we maintain the IC's high standards and preserve

confidence in the analytic processes as we increase the use of machines and automated
methods”

* ODNI 1s collaborating with community on developing more effective/accurate
cost/schedule software estimation using automated methods
— Investigating alternatives to estimating Software (SW) via Source Lines Of Code

(SLOC) counting, by exploring alternative estimating methods using Function Points
(FP) for estimating SW development efforts

» This drove the need for automated methods to count/capture FPs
» Similar to the UCC standards in SLOC counting where tool would be Open Source
— This effort focused the IC to initiate an Objective Function Point (OFP) Counting

capability into the government managed tool suite (UCC-G) that is requested for each
IC MSA program acquisition via CDRL

» Automatically calculating OFP’s based on International Function Point User Group (IFPUG)
documented standards

= Currently analyzes C, C++, C#, Java and Java Script languages

What are Objective Function Points (OFPs)?

* Developing an Automated Objective Function Point Counter
— Developing a standard automated approach to counting OFPs to avoid
subjective estimates
» Standard Function Points (FP) require Function Point experts to derive

» Used UCC tool baseline since it already parses through most SW languages and 1s
Open Source

— Current Function Point estimates use IFPUG tables such as:

1. External Input (EI): Functions that move data
into the application without presenting data
manipulation.

)

External Output (EO): Functions that move data
to user and presents some data manipulation.

3. External Inquiries (EQ): Functions that move
data to user without presenting data
manipulation.

4. Internal Logical Files (ILF): The logic in the
form of fixed data managed by the application
using External Input (EI)

5. External Interface Files (EIF): The logic in the
form of fixed data used by the application but did
not run in it

— OFPs capture the sizing needed to assess the effort and are based from the
IFPUG weights

» Cyclomatic Complexity determines which IFPUG table to use

EC/SRA CA
y

Complexity Mapping to OFPs

* To test the OFPs, we used NASA’s
General Missions Analysis Tool (GMAT)

SOftware Cyclomatic Comppirecx;;\;(lgC) per Function
— Open Source code P =
* To calculate the OFPs from GMAT code, . 58
we can pull out the following data: : s§
— The Cyclomatic Complexity shows that) o
most of the GMAT code falls less than 10 1%

— This will drive the OFPs to be the lowest
values from the IFPUG tables

CC per Function

* Things to consider on OFPs:

— OFPs are derived from the actual source T
Values

- Every Function getS an OFP aSSOCiated tO o ﬁﬁc%‘:;g;%well UL = External Input (EI}: Functions that move data into the
i t . Cngst and Effort is Less application without presenting data manipulation.

» External Output (EQ): Functions that move daia to

— There are more developed Functions in the 11—-20 . ﬁﬁﬂﬂﬁﬂigﬁ:ﬂw user and presents some data manipulation.
. . . Costand Effort is Medi = External Inquiries (EQ): Functions that move data to

code than what the Function Point experts 03t anc BHortis Medium user without presenting data manipulation.
can prediCt - Very Complex Code - External Interface Files (EIF): The logic in the form of
. . . 21-40 = Low Testability fixed data used by the application but did not run in it

— This will lead to higher OFPs than FPs " Costand Effort s Medium
:) = Internal Logical Files (ILF): The logic in the form of

» Assumlng FPS WCrIcC generated fI'Ol’l’l > 40 - Bt st fixed data managed by the application using External

. = Very High Cost and Effort
requirements by an FP expert ST s Input (E1)

EC/SRA CA
y

OFPs and Requirements

5 Different small test cases were performed with a FP expert
— FP Expert was provided 1n all cases UML Sequence and Class Model diagrams

— All 5 cases had less than a 10% error between the automated OFPs and the predicted
FPs

 This led to a large test case using a subset of the GMAT Formal SW Requirements
document

— The GMAT Formal SW Requirements document is composed of:
» Application Control, Resource and Command Objects Functional Requirements
» External Interface, Environmental, Computer Resource and Test System Requirements

— INITIAL TEST: Using a subset of the GMAT requirements document (see backup
slide for details), the FP expert calculated FPs that showed ~ 200% error from the
OFPs

— FINAL TEST: After providing the FP expert the Unified Modeling Language (UML)
documentation, the FP expert calculated FPs that showed ~ 2% error from the OFPs

* This shows the Uncertainty of estimates are due to the Maturity of the
Requirements provided to the estimator

— Phase A requirements are being refined/defined/matured while some are not specified
until the end of Phase B

— As the requirements get more mature, the Uncertainty of the estimate will go down

EC/SRA CA
y

ODNI

Using OFPs to Capture Effort

* OFPs capture the total effort of a baseline as though it was ALL NEW code

* How do we use these if we are trying to capture the effort between baselines or in
AGILE’s case “Sprints” or “Increments”?

— We needed a new metric that can utilize the UCC DIFF capabilities

* Created a measure to capture development called Effective Objective Function Points
(EOFPs)

EOFPs are computed by comparing the source code of two baselines

After the code is divided into modules / classes or each code baseline, the code is compared and
the number of ADDED, MODIFIED and DELETED Logical Source Lines Of Code (LSLOC) is
determined for each function within each module

For each function, the number of ADDED + MODIFIED lines (as a percentage of total lines) is
multiplied by the OFP to determine the EOFP for that function.

The EOFP for the module is simply the sum of the EOQFP for all functions

- (Baseline 1

-
Function 1
. 40 Total LSLOC

+ 4 Total OFP

AN
.

-

Baseline 2

Function 1
- 50 Total LSLOC
*+ 4 Total OFP

Function 2
- 10 Total LSLOC
+ 3 Total OFP

Function 1 was modified:

+ 25 Added & Modified lines
* 50%*4=2EOFP

Function 2 is new:
. 10 Added lines
= 100% * 3 =3 EOFP

Total of 5 EOFP
For Baseline 1 To 2

Ec/sra ca KN
y

ODNI

NASA’s General Missions Analysis Tool (GMAT) Example

* Results from comparison between GMAT C++ « QOther potential metrics:
code baselines 2017a and 2018a

— EOFPs / Hours
2017a 2018a .
. . — LSLOC / Function
Physical Source Lines Of Code (PSLOC) 457,112 535,661)
Logical Source Lines Of Code (LSLOC) 290,674 318,173 » Previous UCC counter reported by file and
Delta LSLOC 27,499 NOT by Function
es (Classes) 3,104 3,191
LSLOC per Function Percentile
< OFPs 70,953 74,099 o
Delta OFPs 3,146 90%
80%
70%
DIFF Results Z 60%
w 50%
NEW LSLOC 9.3% 5 o
DELETED LSLOC 1.0% o
MODIFIED LSLOC 0.7% 10%
UNMODIFIED LS,@€ 89.0% . " 20 o % 100
@ 3[0233 LSLOC per Function

— Objective Maintainability Index

* Here are some high level GMAT metrics: » GMAT = 135.67 High Maintainability
— Total # EOFPs = 3,023.3

Maintainability Index
— # Changed/N ew Modules = 211 85 and more: good maintainability
— # Changed/New Functions = 1,473 65-85: moderate maintainability
— EOFPs / (Changed/New Modules) = 14.33 under 65: difficult to maintain
— EOFPs / (Changed/New Functions) = 2.05 bad pieces of code (big, uncommented,

unstructured) the MI value can be even negative

— (Changed/New Functions)/(Changed/New
Modules) = 6.98

We are opening the door to new metrics to estimate effort

EC/SRA CA
y

ODNI . . .
- Potential of Using Requirements Documents

* Software Requirement Documents contain nouns and verbs

— Object Oriented Theory:
» Nouns become Modules/Classes

» Verbs become Process Functions

» Using Natural Language Toolkit (NLTK) to automatically extract nouns and verbs

» This is free open source on the unclass and class side
* NLTK parses out the nouns and verbs from the requirements very well

 In order to identify key words that correlate to effort, we need to calculate weights for the
nouns and verbs

— These weights would be derived by scoring them against the rest of the requirement document

* Due to long runtime with NLTK algorithms when scoring, we investigated using Lucene
in place of NLTK to compute Scoring between Module / Class names and individual
requirements

— Lucene combines Boolean model (BM) of Information Retrieval with Vector Space Model
(VSM) of Information Retrieval - documents "approved" by BM are scored by VSM

— Lucene is open source available on high and low side
— Calibrated Lucene Scoring model to properly map Key Words to Requirements
» Calibration involved many hours of many different test cases and individually comparing results

* Runtime of Lucene Scoring outperformed NLTK Scoring

Ec/sra c4 N
y

ODNI . .
- What can we do with Scoring?

* How can we use the Scoring of Nouns and Verbs to help estimate the number of Functions?
— Following the basic principle from Object Oriented Analysis:

» Nouns are potential Modules (classes)

By using the Scores from the Unique Nouns, we could estimate the number of Modules
(Classes)

— The # of Unique Nouns equals the # of Modules (Classes) when: Nouns
» Score of 3 or more (see plot of right)
» As previously noted, there are 211 GMAT Module (Classes) @D

Functions currently do not trend to Unique Verbs
— Verbs such as “Get or “Set” are used many times
— Requires more research

* As previously noted, there are 6.98 Functions per Module (Class) in GMAT
— Currently observing other programs in this range (6 — 7)
— Multiplying the 211 Total Changed and New Modules by 6.98, we get 1473 GMAT Functions

Next challenge is to convert to EOFPs

— As previously noted, there are 2.05 EOFPs/ Total Changed and New Functions in GMAT
» Currently observing other programs in this range (2 — 3)

— Total Estimated EOFPs = 2.05 * 1473 = 3,019.7

— Total UCC EOFPs = 3,023.3

ODNI ST . :
- Estimating Risk from Requirements

* This Monte Carlo approach provides a Risk Range for the estimate

— If Story Points are available from data collection efforts, the Story Points map to each requirement
where each EOFP maps to Code

» Story Points are a subjective means in Agile to relate size to effort
— If Story Points are NOT available, subjectively map each requirement to the Code Functionality

Challenge has always been correlating requirements to Function Points

Scoring paves the way for Monte Carlo approach to correlate requirements to Function
Points

Effective Objective
Function Points (EOFPs) AGILE development

from the Modules Story Points which
(Classes) and Methods relate to Requirements
(Functions)

This allows Automapping between Code to Requirements
— Each requirement can now map to a section of Code as well as EOFPs
— Thus producing ranges for each requirement

This bounds the estimate with ranges from the Monte Carlo simulation runs

ODNI .. ST
- Summary of Sizing Estimating Process

GMAT FEATURE: The Ground Station object supports a l

Use
Relationships to
estimate #
EOFPs

GMAT FEATURE: The Ground Station object supports a l
n
i GMAT FEATURE: The Ground Station object supports a

of new troposphere model, the Marini model, matching the
implementation used in GTDS. One operational advantage
of the Marini model is that it doesn’t require input of
weather data at the Ground station. (Models that do
accept weather data may have more accuracy.)

Read in Reqts

a

y/

/l/' \\ s
\ V/ ‘ B i
[i/ Use NLTK \\ NP VBD IN NP
I Run Monte to parse I

s R
DT W JJ NN barked at DT NN

L o \

the little yellow dog the cat

Carlosim } nouns and
verbs

Use Hypothesis
to estimate #
Functions

Use NLTK to
parse nouns
and verbs

Y/ Run OFP Y
UCC and j
\VETe} Reqts

\ to Classes /4

to score
. each REQT //

Use Lucene to

o score each ..
noun, verb

ol L 1| "%%%eceqeee o0
100 200 300 400 500 600 700 800

ODNI : :
- Overview of Accomplishments

* Accomplishments:

l.

Need an Automated and Objective method to capture sizing

Objective Function Point (OFP) tool provides this solution

Need an Automated method to pull nouns and verbs from Requirement documents

NLTK tool provides this solution

Need to Correlate code to Requirement descriptions

Lucene Scoring tool provides a quick solution for each word combination

Need to isolate specific development to specific SW Requirements

OFP DIFF tool isolates the development that relates to stories/specific Requirements

Need to capture new Sizing metric to relate specific development to specific Requirements
OFP DIFF tool now reports Effective OFPs (EOFPs)

Need to Map Code to Requirements

Built a Mapping tool to read in Classes and Methods/Functions and map them to Requirements
Need to estimate EOFPs based from specific Requirements

Investigating various hypotheses that will provide confidence in estimating EOFPs

Need to convert EOFPs to hours

Need to collect more program baselines

POCs

 Govt POC: Michal Bohn MICHALB6(@dni.gov

* Presenter: Paul Cymerman pcymerman(@gquaternion-consulting.com

mailto:MICHALB6@dni.gov
mailto:pcymerman@quaternion-consulting.com

BACKUP

GMAT Requirements for Unit Level Testing

FRR-42.1.0 The system shall allow the user to choose among the following objects as the
central body of a ground track plot:
FRR-42.1.1 1) Default Celestial Body
FRR-42.1.2 2) User-defined Body
FRR-42.2.0 The Ground Track Plot shall draw the longitude and latitude time-history for the
following object types:
FRR-42.2.1 1) Spacecraft
FRR-42.2.3 2) Groundstation
FRR42.2.0 The system shall display icons on the ground track to indicate the locations of
the following object types:
FRR-42.3.1 1) Spacecraft
FRR-42.3.2 2) Groundstation
FRR-42.4.0 The system shall display object labels next to the icons for the following object
types:
FRR-42.4.1 1) Spacecraft
FRR-42.4.2 2) Groundstation
FRR-42.5.0 The system shall allow the user to define the data plotting options for a ground
track plot:
FRR-42.5.1 1) The number of integration steps to skip between plot points
Groundtrack Plot* FRR42.5.2 2) The number of plot points to collect before updating a ground
track plot
3) The number of plot points to retain and redraw during
FRR-42.5.3) .)
propagation and animation.
The system shall allow the user to specify how data is drawn to Ground Track
FRR-42.6.0 Plots during iterative processes such as differential correction, optimization,
and estimation. The following options shall be available:
FRR-42.6.1 1) Show all iterations/perturbations
FRR-42.6.2 2) Show current iteration/perturbation only
FRR-42.6.3 3) Show solution only
FRR-42.7.0 The system shall allow the user to specify a texture map using the following
options
FRR-42.7.1 1) Use default texture map for central body
FRR-42.7.2 2) Use user-defined texture map.
FRR-42.8 The system shall optionally display or not display a configured ground track plot
FRR-42.9 The Ground Track Plot shall display the epoch in UTC Gregorian format
FRR.42.10 The system shall allow the user to animate the Ground Track Plot after a run is
complete
FRR-42.11 The system shall display the latitude and longitude values when the cursor is
placed over a GroundTrackPlot.

EC/SRA CA
y

ODNI

Objective Function Point Counting Process on Existing Source Code

» Parse source code for relevant metrics:
— Modules (classes, or file names for non-OO code and code outside of classes)
» Class inheritance
» Associations between modules
— Methods / Functions
» Cyclomatic Complexity
— Attributes (class level variables)

* Cyclomatic Complexity for each method / function is used to determine a which OFP table to use
(EL, EO/EQ, ELF, ILF)
— Complexity < 11 = EI table
— Complexity <21 = EO/EQ table
— Complexity <41 = ELF table
— Complexity >= 41 = ILF table

» Use metrics gathered in step 1 to determine which row to choose in the OFP table
— Class Inheritances (+1) corresponds to OFP RET (Record Element Type)
— Class Associations correspond to OFP FTR (File Type Reference)
— Class Attributes correspond to OFP DET (Data Element Type)

- 6%% nulr)riber of inheritances, associations, and attributes for a module tells us which row to select in the
tables.

» The average of the RET/DET and FTR/DET ratios gives us a low, average, or hiﬁh risk, corresponding to
thglthree rows in each OFP table, so we simply use that knowledge to pick the FP number from our selected
table

* Now we have an Objective Function Point number for each method/function. Total them all
together and we have the OFP for the source code

EC/SRA CA
y

ODNI

* To account for the interfaces in the design of the
code, Function Point Theory captures these
interfaces through 5 different pieces of data:

1.

External Input (EI): Functions that move data
into the application without presenting data
manipulation.

. External Output (EO): Functions that move data

to user and presents some data manipulation.

. External Inquiries (EQ): Functions that move

data to user without presenting data
manipulation.

Internal Logical Files (ILF): The logic in the
form of fixed data managed by the application
using External Input (EI)

. External Interface Files (EIF): The logic in the

form of fixed data used by the application but did
not run in it

* Based on the 5 above types and the calculated
RET, FTR and DET, the Complexity value can be
attained by using the look-up tables on the right

»

These are standard IFPUG tables

Determine Function Point Complexity

Table 1 Function Complexity Matrix (Shared table between El)

Files Type Referenced (FTR)

[

Data Elements Types (DETs)

1-4

5-15

Greater than 15

Less than 2 Low (3) Low (3) Average (4)
2 Low (3) Average (4) High (6)
Greater than 2 Average (4) High (8) High (6)

Table 2 Function Complexity Matrix (Shared table between EO, EQ)

Files Type Referenced (FTR)

[

Data Elements Types (DETs)

1-5

6-19

Greater than 19

Less than 2 Low (4) Low (4) Average (3)
2or3 Low (4) Average (5) High (7)
Greater than 3 Average (5) High (7) High (7)
Table 3 Function Complexity Matrix (Shared table ILF)
Record Element Type (RET) Data Elements Types (DETs)
i 119 20-50 51 or More
1 Low (7) Low (7) Average (10)
2to5 Low (7) Average (10) High (15)
6 or More Average (10) High (15) High (15)
Table 4 Function Complexity Matri> (Shared table EIF)
Files Type Referenced (FTR) Data Elements Types (DETs)
i 1-19 20-50 51 or More
1 Low (3) Low (3) Average (7)
2to5 Low (5) Average (7) High (10)
6 or More Average (7) High (10) High (10)

Cyclomatic Complexity Approach

* UCC already collects Cyclomatic Complexity (CC)

* Objective Function Point (OFP) uses CC as a proxy for the complexity-related inputs to Function
Point calculations

McCabe

Complexity McCabe Complexity Definitions Traditional Function Point Mapping Definitions
Values

o SLEES TN External Input (El): Functions that move data into the

Lol glngsht lﬁstggflclzﬁis i application without presenting data manipulation.

. Complex Code = External Output {EQ): Functions that move data to
_ . - - user and presents some data manipulation.
11-20 . rl[qus‘sjtmar:d-l—g%ﬂj:gwrdedium « External Inquiries (EQ): Functions that move data to
user without presenting data manipulation.

« ery Complex Code « External Interface Files (EIFY. The logic in the form of

21-40 = Low Testability fixed data used by the application but did not run in it
* Cost and Effort is Medium

« |nternal Logical Files (ILF): The logic in the form of

ST e s fixed data managed by the application using External

>
40 Wery High Cost and Effiort Input (E1)

-
o
r
e
C
o
m
p
I
e
v

ODNI

Simple Example

Run counter on a small program that has only 2 Classes resulting in 2 files
File 1 has 2 Methods/Functions
File 2 has 1 Method/Function

Below are results from the Function Point tool:

— Where:

» RET: Record Element Type

» FTR: File Type Reference

» DET: Data Element Type

» CC: Cyclomatic Complexity

» OFP: Objective Function Points

RET FTR DET cc OFP
FILE/Method1.1 2 1 10 3
FILE/Method1.2 3 2 20 7
FILE/Method2.1 10
TOTAL 20

McCabe
Complexity
Values

McCabe Complexity Definitions

* Stryttured and well written code
= High Testability
= (Pst and Effort is Less

= #Complex Code
Medium Testability
Cost and Effort is Medium

= Very Complex Code
* Low Testability
» Cost and Effort is Medium

= Difficult to test
* ‘ery High Cost and Effort

Traditional Function Point Mapping Definitions

= External Input (El). Functions that move data into the
application without presenting data manipulation.

= External Output (EOQ): Functions that move data to
user and presents some data manipulation.

= External Inguiries (EQ): Functions that move data to
user without presenting data manipulation.

= External Interface Files (EIF). The logic in the form of
fixed data used by the application but did not run in it

= Internal Logical Files (ILF): The logic in the form of
fixed data managed by the application using External
Input (EI)

EC/SRA CA
y

	Estimating SW Costs from Requirements using Objective Function Points Research
	Overview
	What are Objective Function Points (OFPs)?
	Complexity Mapping to OFPs
	OFPs and Requirements
	Using OFPs to Capture Effort
	NASA’s General Missions Analysis Tool (GMAT) Example
	Potential of Using Requirements Documents
	What can we do with Scoring?
	Estimating Risk from Requirements
	Summary of Sizing Estimating Process
	Overview of Accomplishments
	POCs
	BACKUP
	GMAT Requirements for Unit Level Testing
	Objective Function Point Counting Process on Existing Source Code
	Determine Function Point Complexity
	Cyclomatic Complexity Approach
	Simple Example

