
Calibrating
COCOMO® II for
Functional Size
Metrics
ANANDI HIRA

BRAD CLARK, BARRY BOEHM

Software product size
estimate (in KSLOC)

Software product,
process, computer, and
personal attributes

Software reuse,
maintenance, and
increment parameters

Software Project data

Software
development and
maintenance:
• Costs (effort)
• Schedule

estimates
• Distributed by

phase,
activity,
increment

Local calibration to
organization’s data

COCOMO Estimates:
• Resource
• Equivalent Size
• Reuse impact
• Re-Engineering

or conversion
• Maintenance

COCOMO® II Model

12 August 2015 SW ITCIPT MEETING ©2015 USC-CSE 2

COCOMO is an open and free model

Size Metrics’ Level of Abstraction

3

Summary Goals

User Goals

Sub-Functions

Story Points

Use Cases
Use Case Points (UCPs)

IFPUG Function Points (FPs)
COSMIC Function Points (CFPs)

Source Lines of Code (SLOC)

Requirement Levels Size Metrics

2 Prominent Functional Size Methods

IFPUG SOFTWARE MODEL COSMIC SOFTWARE MODEL

4

COCOMO® II Effort Model Format

𝑃𝑃𝑃𝑃 = 𝐴𝐴 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵 + 0.1 × ∑ 𝑆𝑆𝑆𝑆) × ∏𝐸𝐸𝐸𝐸

Where
PM = Software development effort (in Person-months)
Size = Size in Thousand Equivalent Source Lines of Code (KESLOC)
A = Calibrated Productivity constant (ESLOC/PM)
B = Calibrated Exponent constant
SF = Scale Factors – have exponential effect
EM = Effort Multipliers – have multiplicative effect

5

Exponent ranges from 0.9 to 1.2, with 1.0991 as default

Example FP and CFP vs SLOC (UCC Dataset)
IFPUG FUNCTION POINTS (FPS) COSMIC FUNCTION POINTS (CFPS)

6

Objective/Goal
Adjust COCOMO® II parameters:

• Scale Factors – how quickly effort grows with respect to size
• Precedentedness, Development Flexibility, Team Cohesion, Risk and

Architecture Resolution, and Process Maturity

• Effort Multipliers – if necessary
• Perhaps Product drivers, such as Product Complexity (CPLX)?

2 Steps:
• Opinions of improved parameter values
• Bayesian Analysis to combine opinion and regression

7

Participation Requirements
• Familiar with software development at project level, either as

project lead, estimator, or engineer.

• Experience with either or both IFPUG/COSMIC Function Points
• Or other types of functional size metric

• Experience estimating software development cost is very
helpful

• Experience with COCOMO® II or other software estimation
models is helpful.

8

Delphi Workshop

9

10

Participant
Information

Voting
Form –
Small
Project

11

Scale Factor
and brief descr.

For Very Low
and Extra High

Provide labor
hours required

for IFPUG &
COSMIC Function

Points

170 Function Points
~ 9,010 SLOC Java code
COCOMO II estimate
5,013 hours, 11.2 mo.

Voting
Form –
Large
Project

12

Scale Factor
and brief descr.

For Very Low
and Extra High

Provide labor
hours required

for IFPUG &
COSMIC Function

Points

1,000 Function Points
~ 53,000 SLOC Java code
COCOMO II estimate
35,187 hours, 20.6 mo.

Scale Factors
FACTORS WITH EXPONENTIAL EFFECT

13

Precedentedness (PREC)
If a product i s s imi lar to several previous ly developed projects , then the
precedentedness i s h igh.

14

Characteristic Very Low Nominal / High Extra High
Organizational
understanding of product
objectives

General Considerable Thorough

Experience in working with
related software systems Moderate Considerable Extensive

Concurrent development of
associated new hardware
and operational procedures

Extensive Moderate Some

Need for innovative data
processing architectures,
algorithms

Considerable Some Minimal

Development Flexibility (FLEX)

15

Feature/Parameter Rating Very Low Nominal Extra High
Need for software conformance with
pre-established requirements Full Considerable Basic

Need for software conformance with
external interface specifications Full Considerable Basic

Combination of inflexibilities above
with premium on early completion High Medium Low

The PREC and FLEX scale factors are largely intrinsic to a project and
uncontrollable. The next three factors identify management controllables by
which projects can reduce diseconomies of scale by reducing sources of project
turbulence, entropy, and rework.

Architecture/Risk Resolution (RESL) (1/2)
This factor combines two of the scale drivers in Ada COCOMO,
“Design Thoroughness by Product Design Review (PDR)” and “Risk
Elimination by PDR” [Boehm and Royce 1989; Figures 4 and 5]. The
below table consolidates the Ada COCOMO ratings to form a more
comprehensive definition for the COCOMO II RESL rating levels. It
also relates the rating level to the MBASE/RUP Life Cycle Architecture
(LCA) milestone as well as to the waterfall PDR milestone. The RESL
rating is the subjective weighted average of the listed characteristics.

16

Architecture/Risk Resolution (RESL) (2/2)

17

Characteristic/Rating Very Low Nominal Extra High
Risk management plan identifies all critical risk
items and establishes milestones for resolving them

None Some Fully

Schedule, budget, and internal milestones
compatible with risk management plan

None Some Fully

% of development schedule devoted to establishing
architecture

5 17 40

% of required top software architects 20 60 120
Tool support available for resolving risk items and
verifying architectural specs

None Some Full

Level of uncertainty in key architecture drivers Extreme Considerable Very Little
Number and criticality of risk items > 10 Critical 2-4 Critical <5 Non-Critical

Team Cohesion (TEAM) (1/2)

18

Characteristic/Rating Very Low Nominal Extra High
Consistency of stakeholder objectives and
cultures

Little Basic Full

Ability, willingness of stakeholders to
accommodate other stakeholders’
objectives

Little Basic Full

Experience of stakeholders in operating as
a team

None Little Extensive

Stakeholder teambuilding to achieve
shared vision and commitments

None Little Extensive

Team Cohesion (TEAM) (2/2)

19

Very Low Low Nominal High Very High Extra High
Very Difficult
Interactions

Some
Difficult

Interactions

Basically
Cooperative
Interactions

Largely
Cooperative

Highly
Cooperative

Seamless
Interactions

0.0548 0.0438 0.0329 0.0219 0.011 0

New
Value?

Process
Maturity
(PMAT)
The procedure for
determining PMAT is
organized around the
Software Engineering
Institute’s Capability Maturity
Model (CMM). The time
period for rating Process
Maturity is the time the
project starts. There are two
ways of rating Process
Maturity. The first captures
the result of an organized
evaluation based on the
CMM.

20

Adjust any COCOMO® II
Effort Mutipliers?

21

Example Complexity Levels (Industry Dataset)
IFPUG FUNCTION POINTS (FPS) COSMIC FUNCTION POINTS (CFPS)

22

Example Complexity Levels (UCC Dataset)
IFPUG FUNCTION POINTS (FPS) COSMIC FUNCTION POINTS (CFPS)

23

Product Complexity (CPLX) (1/3)

24

Control Operations Computation
Operations

Device Dependent
Operations

Data Management
Operations

User Interface
Operations

Very Low

Straight-line code
with few non-nested
structured
programming
operations

Evaluation of simple
expressions: e.g., A =
B + C*(D-E)

Simple read, write
statements with
simple formats.

Simple arrays in main
memory.

Simple input forms,
report generators.

Low

Straightfoward
nesting of structured
programming
operators. Mostly
simple predicates.

Evaluation of
moderate-level
expressions: e.g., D =
SQRT(B*2-4*A*C)

No congnizance
needed of particular
processor or I/O
device
characteristics.

Single file subsetting
with no data
structure changes,
no edits, no
intermediate files.

Use of simple GUI
builders.

Nominal

Mostly simple
nesting. Some inter-
module control.
Decision tables,
simple callbacks or
message passing.

Use of standard
math and statistical
routines. Basic
matrix/vector
operations.

I/O Processing
includes device
selection, status
checking and error
processing.

Multi-file input and
single file output.
Simple structural
changes, simple
edits.

Simple use of
widgets.

Product Complexity (CPLX) (2/3)

25

Control Operations Computation
Operations

Device Dependent
Operations

Data Management
Operations

User Interface
Operations

High

Highly nested
structured
programming operators
with many compound
predicates. Queue and
stack control.

Basic numerical
analysis.

Operations at
physical I/O level.
Optimized I/O
overlap.

Simple triggers
activated by data
stream contents.

Widget
development and
extension. Simple
voice I/O,
multimedia.

Very High

Reentrant and recursive
coding. Fixed-priority
interrupt handling. Task
sync, complex callbacks.

Difficult but
structured
numerical analysis.

Routines for
interrupt diagnosis,
servicing, masking.
Communication line
handling.

Distributed database
coordination.
Complex triggers.
Search optimization.

Moderately complex
2D/3D, dynamic
graphics,
multimedia.

Extra
High

Multiple resource
scheduling.

Difficult and
unstructured
numerical analysis

Device timing-
dependent coding,
micro=programmed
operations.

Highly coupled,
dynamic relational
and object
structures.

Complex
multimedia, virtual
reality, natural
language interface.

Product Complexity (CPLX) (3/3)

26

Very Low Low Nominal High Very High Extra High

Productivity
Range

(Max/Min)

Straight—
line, simple

math,
read/write,

arrays

Simple
predicates,
I/O device
not known,
simple GUI

builders

Simple
nesting,
decision-

tables,
math &
stats,

device
selection,
widgets

Highly
nested,

compound
predicates,
numerical
analysis,

operations
at I/O level,

triggers,
Multimedia

Recursive
coding,

complex
callbacks,
routines,
distr DB,
complex
triggers,
2D/3D

graphics

Resource
scheduling,

device
timing,
coupled

and
dynamic

structures,
natural

language
0.73 0.87 1 1.17 1.34 1.74 2.38

Effort Multipliers
PRODUCT AND PLATFORM FACTORS

27

Required Software Reliability (RELY)

This is a measure of the extent to which the
software must perform its intended function over
a period of time.

28

Very Low Low Nominal High Very High
Productivity

Range
(Max/Min)

Slight
Inconvenience

Low, easily
recoverable

losses

Moderate,
easily

recoverable
losses

High
Financial loss

Risk to
human life

0.82 0.0624 0.0468 0.0312 1.26 1.54

Database Size (DATA)
Capture the effect large test data requirements have on
product development. Rating is determined by calculating
the ratio of bytes in the testing database to SLOC in the
program.
Consider effort required to generate the test data that will
be used to test program.

29

Low Nominal High Very High
Productivity

Range
(Max/Min)

DB Bytes/ Project
SLOC < 10

10 ≤ DB Bytes/
Project SLOC <

100

100 ≤ DB Bytes/
Project SLOC <

1000

DB Bytes/
Project SLOC >

1000
0.9 1 1.14 1.28 1.42

Developed for Reusability (RUSE)

Accounts for additional effort needed to construct
components intended for reuse on current or future
projects. This effort is consumed with creating more generic
design of software, more elaborate documentation, and
more extensive testing to ensure components are ready for
use in other applications.

30

Low Nominal High Very High Extra High
Productivity

Range
(Max/Min)

None Across
Project

Across
Program

Across
Product Line

Across
Multiple

Product Lines
0.95 1 1.07 1.15 1.24 1.31

Documentation Math to Life Cycle Needs (DOCU)

Cost driver is evaluated in terms of the suitability of the
project’s documentation to its life cycle needs.

31

Very Low Low Nominal High Very High
Productivity

Range
(Max/Min)

Many life
cycle needs
uncovered

Some life
cycle needs
uncovered

Right-sized to
life cycle

needs

Excessive for
life cycle

needs

Very
excessive for

life cycle
needs

0.81 0.91 1 1.11 1.23 1.52

Execution Time Constraint (TIME)

Measure of the execution time constraint imposed upon a
software system. Expressed in terms of the percentage of
available execution time expected to be used by the system
or subsystem consuming the execution time resource.

32

Nominal High Very High Extra High
Productivity

Range
(Max/Min)

≤ 50% use of
available

execution time

70% use of
available

execution time

85% use of
available

execution time

95% use of
available

execution time
1 1.11 1.29 1.63 1.63

Main Storage Constraint (STOR)

Represents the degree of main storage constraint imposed
on a software system or subsystem. Many application
expand to consume whatever resources are available. The
rating is in terms of the percentage of available main
storage expected to be used by the system or subsystem.

33

Nominal High Very High Extra High
Productivity

Range
(Max/Min)

≤ 50% use of
available storage

70% use of
available
storage

85% use of
available storage

95% use of
available storage

1 1.05 1.17 1.46 1.46

Platform Volatility (PVOL)

“Platform” is used here to mean the complex of hardware
and software (OS, DBMS, etc.) the software product calls on
to perform its tasks. This driver represents the amount of
effort required to maintain the software product to be
compatible with changes to platform.

34

Low Nominal High Very High
Productivity

Range
(Max/Min)

Major change
every year; Minor

change every
month

Major change
every 6 mo.,

Minor change
every 2 weeks

Major change
every 2 mo.,

Minor change
every week

Major change
every 2 weeks,
Minor change
every 2 days

0.87 1 1.15 1.3 1.49

Effort Multipliers
PERSONNEL AND PROJECT FACTORS

35

Analyst Capability (ACAP)
Analysts are personnel who work on requirements, high-level design,
and detailed design. The major attributes that should be considered
in this rating are analysis and design ability, efficiency and
thoroughness, and the ability to communicate and cooperate.

The rating should not consider the level of experience. Percentile is
with respect to all developers and analysts across the US.

36

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
15th percentile 35th

percentile
55th

percentile
75th

percentile
90th

percentile
1.42 1.19 1 0.85 0.71 2.0

Programmer Capability (PCAP)
Evaluation should be based on the capability of the programmers as
a team rather than as individuals. Major factors which should be
considered in the rating are ability, efficiency and thoroughness, and
the ability to communicate and cooperate.

The experience of the programmer should not be considered here.

37

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
15th percentile 35th

percentile
55th

percentile
75th

percentile
90th

percentile
1.34 1.15 1 0.88 0.76 1.76

Personnel Continuity (PCON)
Representation of how consistent the team remains over the
duration of the project.

With personnel turnover, knowledge is lost with team members.
Existing team members must spend time to train new members, and
new members require learning effort.

38

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
52%/year

stayed
64%/year

stayed
88%/year

stayed
94%/year

stayed
97%/year

1.29 1.12 1 0.9 0.81 1.51

Applications Experience (APEX)

The rating for this cost driver depends on the level of
applications experience of the project team developing the
software system or subsystem. The ratings are defined in
terms of the project team’s equivalent level of experience
with this type of application.

39

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
< 2 years 6 months 1 year 3 years 6 years

1.22 1.1 1 0.88 0.81 1.51

Platform Experience (PLEX)

This cost driver recognizes the importance of understanding
the use of more powerful platforms, including graphic user
interface, database, networking, and distributed
middleware capabilities, as required by the software
product.

40

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
< 2 years 6 months 1 year 3 years 6 years

1.2 1.09 1 0.91 0.84 1.4

Language and Tool Experience (LTEX)
This is a measure of the level of programming language and software
tool experience of the project team developing the software system
or subsystem.

Includes use of tools that perform requirements and design
representation and analysis, configuration management, document
extraction, library management, program style and formatting,
consistency checking, planning and control, etc.

41

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
< 2 years 6 months 1 year 3 years 6 years

1.19 1.09 1 0.91 0.85 1.43

Use of Software Tools (TOOL)

42

Very Low Low Nominal High Very High

Productivity
Range

(Max/Min)

Edit, code,
debug

Simple,
frontend,

backed
CASE, little
integration

Basic life
cycle tools,
moderately
integrated

Strong,
mature life
cycle tools,
moderately
integrated

Strong,
mature,

proactive life
cycle tools,

well
integrated

with
processes,
methods,

reuse
1.17 1.09 1 0.9 0.78 1.5

Multisite Development (SITE) (1/2)
Determining this cost driver’s rating involves assessing and
judgement-based averaging of 2 factors: site collocation
(from fully collocated to international distribution) and
communication support (from surface mail and some phone
access to full interactive multimedia).
Note: if a team is fully collocated, it doesn’t need interactive
multimedia to achieve an Extra High rating. Email would
usually be sufficient.
* Did not include communication support in hand-out to avoid
confusion.

43

Multisite Development (SITE) (2/2)

44

Very Low Low Nominal High Very High Extra High

Productivity
Range

(Max/Min)

Team spread
out inter-
nationally

Multi-city
and multi-
company

Multi-city
or multi-
company

Same city
or metro

area

Same
building or

complex

Fully
collocated

Some
phone,
email

Individual
phone

Email Wide-band
electronic

communica
tion

Occasional
video

conference

Interactive
multi-
media

1.22 1.09 1 0.93 0.86 0.8 1.53

Required Development Schedule (SCED) (1/2)

This rating measures the schedule constraint imposed on the project team
developing the software. The ratings are defined in terms of the
percentage of schedule stretch-out or acceleration with respect to a
nominal schedule for a project requiring a given amount of effort.

Accelerated schedules tend to produce more effort in the earlier phases
to eliminate risks and refine the architecture and more effort in the later
phases to accomplish more testing and documentation in parallel.

Stretch-outs do not add or decrease effort. They lead to savings from
smaller team sizes and are generally balanced by the need to carry project
administrative functions over a longer period of time.

45

Required Development Schedule (SCED) (2/2)

46

Very Low Low Nominal High Very High Productivity
Range

(Max/Min)
75% of

Nominal
85% of

Nominal
100% of
Nominal

130% of
Nominal

160% of
Nominal

1.43 1.14 1 1 1 1.43

Review Results

47

	Calibrating COCOMO® II for Functional Size Metrics
	COCOMO® II Model
	Size Metrics’ Level of Abstraction
	2 Prominent Functional Size Methods
	COCOMO® II Effort Model Format
	Example FP and CFP vs SLOC (UCC Dataset)
	Objective/Goal
	Participation Requirements
	Delphi Workshop
	Participant Information
	Voting Form – Small Project
	Voting Form – Large Project
	Scale Factors
	Precedentedness (PREC)
	Development Flexibility (FLEX)
	Architecture/Risk Resolution (RESL) (1/2)
	Architecture/Risk Resolution (RESL) (2/2)
	Team Cohesion (TEAM) (1/2)
	Team Cohesion (TEAM) (2/2)
	Process Maturity (PMAT)
	Adjust any COCOMO® II Effort Mutipliers?
	Example Complexity Levels (Industry Dataset)
	Example Complexity Levels (UCC Dataset)
	Product Complexity (CPLX) (1/3)
	Product Complexity (CPLX) (2/3)
	Product Complexity (CPLX) (3/3)
	Effort Multipliers
	Required Software Reliability (RELY)
	Database Size (DATA)
	Developed for Reusability (RUSE)
	Documentation Math to Life Cycle Needs (DOCU)
	Execution Time Constraint (TIME)
	Main Storage Constraint (STOR)
	Platform Volatility (PVOL)
	Effort Multipliers
	Analyst Capability (ACAP)
	Programmer Capability (PCAP)
	Personnel Continuity (PCON)
	Applications Experience (APEX)
	Platform Experience (PLEX)
	Language and Tool Experience (LTEX)
	Use of Software Tools (TOOL)
	Multisite Development (SITE) (1/2)
	Multisite Development (SITE) (2/2)
	Required Development Schedule (SCED) (1/2)
	Required Development Schedule (SCED) (2/2)
	Review Results

