

Depth of Test, Fred Hall, Page 1 of 4, 7/27/04

Measurement Information Specification
Depth of Test
Version 2.1

Information Need Description

Information
Need

Is the software design too complex? Is the software design physically correct?

Information
Category

Schedule and Progress

Measurable Concept

Measurable
Concept

Work Unit Progress

Entities and Attributes

Relevant Entities Software design architecture

Attributes
• Paths,
• Statements,
• Inputs, and/or
• Decision points

Base Measure Specification

Base Measures
1. Attribute occurrences
2. Attribute occurrences tested
3. Attribute occurrences successfully tested

Measurement
Methods

1. Count the number of the attribute occurrences in the software component being
tested (path, statement, input, or decision point).

2. Count the number of the attribute occurrences that are exercised in test at least once.
3. Count the number of the attribute occurrences that are successfully exercised in test

at least once.
Type of Method Objective
Scale Integers from zero to infinity
Type of Scale Ratio
Unit of
Measurement

Attribute occurrences

Derived Measure Specification

Derived
Measure

1. Test coverage
2. Test success

Measurement
Function

1. Number of attribute occurrences tested divided by attribute occurrences times 100
(percentage)

2. Number of attribute occurrences successfully tested divided by attribute occurrences
times 100 (percentage)

Depth of Test, Fred Hall, Page 2 of 4, 7/27/04

Indicator Specification

Indicator
Description and
Sample

Depth of Testing: This indicator displays the derived measure of the percent of attribute
occurrences tested (test coverage) in the software component under test, and the derived
measure of the percent of attribute occurrences successfully tested (test success).

0%

20%

40%

60%

100%

80%

4 5 6 7

Q
u

a
n

ti
ty

T
e

s
te

d
(p

e
rc

e
n

t)

Depth of Testing - Decision Point Coverage

System: HONDO UNIT: C3I Report Date: 8/2/2002

Sample Depth of Testing Graph Of Decision Point Measure

8 9 10 11

Program Month (12/01 - 7/02)

Test Coverage Overall Success

Analysis
Model

• Test coverage reported the percent of total software attributes that were tested. The
percent of coverage that had to be achieved depended on the attribute that was
measured. All decision points and statements were tested prior to delivery, and the
“highest possible” percent of all possible paths and inputs were tested prior to
delivery.

• Test success reported the percent of total software attributes that were tested and
verified to be correct. The criterion for test success was that all attributes that failed
the test must be fixed and tested as correct prior to delivery.

Decision Criteria
All decision points and statements had to be successfully tested at least once (100%), and
the “highest possible” percent of all possible paths and inputs had to be successfully
tested.

Indicator
Interpretation

This indicator told the project manager that the percent of decision points that was tested
and the percent of decision points that was proven correct by successful test had been
steadily increasing during the planned 14-month integration-test period. The high percent
of test coverage (percent tested) and test success (percent tested correct) at month 10 and
the increasing trends of these derived measures indicated that there was little risk in
achieving software integration on the original schedule.

Sample Depth of Testing Indicator

Depth of Test, Fred Hall, Page 3 of 4, 7/27/04

Data Collection Procedure (for each Base Measure)

Complete this section for each base measure listed on the previous page.
Frequency of
Data Collection

Daily beginning at unit test (through development test until the time that a configuration-
controlled code baseline had completed testing). Monthly during post deployment
software support (PDSS).

Responsible
Individual

• The test team collected the test data on a daily basis.
• The test team reported the test data to a CM representative each week for aggregation

in the CM repository test records.
Phase or Activity
in which
Collected

During unit test, integration test, developmental test, and post deployment software
support

Tools Used in
Data Collection

McCabe’s tools were used to provide a physical mapping of software code structure and
to identify which attribute occurrences were exercised in testing.

Verification and
Validation

During unit test, the individual programmers performed “white-box” testing to determine
the correctness of the code in the software units they had designed. Correctness was
based on the test-process criteria that had been established.

The CM representative reviewed the output of the “white-box” test tool and certified that
the test met the organization’s unit test criteria to enter the unit in the approved software
baseline.

During integration or other developmental test, the test team used the “white-box” test
tool to determine the correctness of each attribute in the integrated software baseline.

Each week, the CM representative reviewed the output of the “white-box” test reports to
ensure the integration test met the organization’s test process criteria.

Repository for
Collected Data

• Test records contained data collected daily
• CM repository contained weekly aggregated records

Data Analysis Procedure (for each Indicator)

Frequency of
Data Reporting

• Reporting was monthly during most of the testing and weekly at the end.
• This measure also was reported monthly as a record of regression test on software

changes during development test and PDSS.
Responsible
Individual

CM representative

Phase or Activity
in which
Analyzed

Beginning at unit test, continuing throughout developmental and integration test, and as
required during post-deployment software support

Source of Data
for Analysis

Test records in the CM repository

Tools Used in
Analysis

PSM Insight

Review, Report,
or User

• CM used “white-box” test results to certify all software units for entry into the
approved software baseline.

• Monthly progress reviews reported “white-box” test results as an indicator of
software complexity and design progress.

• Design reviews used “white-box” test results to verify completion of integration test.

Depth of Test, Fred Hall, Page 4 of 4, 7/27/04

Additional Information

Additional
Analysis
Guidance

The depth-of-test indicators do not assess the “correctness” of the design or code. It is
expected that unit tests and unit integration and test will use test cases that demonstrate
proper code design. These cases should be supplemented by other cases to yield
coverage and success measures that provide satisfactory confidence that unexpected
control or data conditions will not occur. Software test programs usually require that
software structure be successfully demonstrated only after passing some “realistic”
number of test cases, under both representative and maximum stress loads. It is
understood that exhaustive testing of all control and data combinations is prohibitive.

Because illegal inputs are used, the depth of test measure provides an indication of the
robustness to the software design.

Some judgment is required to interpret the input measure, because it is unlikely that the
program will be subjected to all possible input streams.

Implementation
Considerations

The recommended minimum elements to track for this measure are paths, statements,
and inputs.

The recommended data definitions for this measure are collected for each element;
however, data may also be collected at the component or system level if adequate test
tools are available.

Depth of testing data collection should be tailored to consider the data collection effort.
The following guidelines are suggested:
• Always compute the coverage of the input domain that has been achieved.
• Always compute the path and statement measures over the set of basis paths, on units

that implement high-priority requirements, or if a unit’s complexity values exceed
established thresholds.

• Compute more comprehensive path and statement measures if automated tools are
available.

