Systemic Analysis of Software Intensive System Acquisition Issues

Software Technology Conference - 2003 April 29, 2003

> John McGarry U.S. Army TACOM-ARDEC

Overarching Questions ...

- Why do we always seem to be trying to solve the same problems in our software intensive programs?
- How do we really improve? Do we know where to start?
- Are we focusing on the symptoms or the causes of our program issues?

Tri-Service Assessment Initiative History

- TAI Initiated by OSD in 1998 to address repeated performance shortfalls attributed to software
 - Mission Implement independent program assessments into standard acquisition practice to help improve program performance
- In May 2000, the Defense Science Board recommended independent assessments for all ACAT I-III programs
- Independent Expert Program Review (IEPR) Policy
 - Initially included in DoD 5000.2-R
 - Now addressed in FY03 Defense Authorization Act, Section 804 -Improvement of Software Acquisition Processes - <u>acquisition</u> <u>evaluation and improvement requirements</u>

Program and Enterprise Focus

Provide objective performance information to DoD decision makers:

- Provide assistance directly to <u>DoD Program</u> <u>Managers</u> to help them identify and correct program issues that impact individual program performance
- Provide information directly to <u>DoD Enterprise</u> <u>Managers</u> about recurring systemic issues that impact performance across the DoD program base

Tri-Service Assessment Initiative Activities

- Single Program Focus
- Objective Improve Program Performance

- Enterprise Focus
 Objective Identify and Characterize
 - **Recurring Performance Factors**

TAI Activities are Based on an Integrated Assessment Architecture

٠

Systemic Analysis

- Identifies recurring program performance issues, risks, and problems
- Quantifies the extent to which these issues are observed
- Determines the cause and effect relationships between identified program performance issues
- Allocates issue responsibility within the DoD acquisition management structure

Systemic Analysis Phases

Phase 1 - Completed July 2001

- Top down analysis approach
- Initial models proof of concepts
- Assessment architecture integration
- Initial data set 10 assessments

Phase 2 - Completed December 2002

- Bottom up analysis approach
- Based on quantification of recurring issues and sequences
- Information driven analysis objectives
- Systemic database
- Extended data set 23 assessments

<u> Phase 3 - Began January 2003</u>

- Phase 2 transition 32 assessments
- Predictive issue pattern analysis
- Quantification of program issue impacts
- Architecture and analysis process improvements

TAI Assessment Architecture

- Identify and prioritize Program issues
- Develop value-added recommendations
- Generates consistent information sets

- Generic Program issue structure
- Defines assessment "scope"
- Flexible typology

Both Components are Required for Individual Program Assessment and Systemic Cross-Program Analysis

Assessment Information Model

- User / Customer
- Schedule
- Technical Product
- Technical Process
- Management
- Resources
- Financial
- Mission Requirements
- Environment
- Program Specific

Management Issue Typology Example

Issue Category	Issue	Sub-Issue		
5. Management	5.1 Acquisition Strategy/Process	5.1.1 Acceptability		
-		5.1.2 Feasibility		
		5.1.3 Suitability		
	5.2 Program Planning	5.2.1 Acceptability		
		5.2.2 Feasibility		
		5.2.3 Suitability		
	5.3 Program & Program Management	5.3.1 Organization		
		5.3.2 Suitability		
		5.3.3 Change Tolerance		
	5.4 Contracting and Subcontracting	5.4.1 Conditions- Constraints		
	5.4 Contracting and Subcontracting	5.4.2 Cost Accounting		
		5.4.3 Progress Tracking		
		5.4.4 Arrangements		
		5.4.5 Timeliness		
		5.4.6 Change		
		Management		
	5.5 Communication	5.5.1 Interfaces		
		5.5.2 Openness		
		5.5.3 Teamwork		

Systemic Analysis Process

Systemic Terminology

List of Banned Words

(B-Words)

- Infrastructure
- Paradigm
- Vision
- Stakeholder
- Overarching
- Taxonomy
- Meta Anything
- Business Process
 Reengineering
- Disambiguate
- Seamless

- Ideate
- Mentor Mentee
- Enplanement
- Disaggregate
- Processcentric
- Object Oriented
- Y2K (Retired)
- Better-Faster-Cheaper
- Cartonization
- Best Practice
- Acluistic

Data Management

TAI - 15

Data and Analysis Limitations

- Customer constraints on the scope of the individual assessments
- Degree of individual assessment adherence to the TAI assessment architecture
 - education and experience
 - inherent team biases
 - degree of assessment detail
 - architecture design
- Size of the assessment program base
 - limits comparative analysis by distribution factor
 - impacts degree of data self-normalization
- Variance inherent in quantifying subjectively derived information
- Lack of quantifiable issue impact data
- Lack of successful program data
- Time sensitive issue validity
- Complexity of program issue interactions
- Program level vs. enterprise level responsibility bias

Assessment Distribution

Systemic Analysis Executive Summary

Recurring Issue Trends

- Exist across assessed programs
- Regardless of program characteristics
- They are more prevalent than expected
- Traditional acquisition and development problems have yet to be adequately addressed
- Policies and decisions related to identified issues have a long program impact life span
- New recurring issues are emerging as DoD acquisition strategies and technologies change

Systemic Analysis Executive Summary

Program Performance Issues

- Causative issues produce different performance symptoms in different programs
 - single issue can cause many symptoms
 - many unique issue combinations
 - relatively complex performance interactions
- The predominant number of identified issues are "triggering issues", not symptoms
- We continue to focus on the symptoms with little success
- Traditional solutions and approaches are predominantly "stovepiped"
- Even the "basics" in many instances are not implemented adequately

Systemic Analysis Executive Summary

Program Failure

- Is related to a combination of unrealistic enterprise constraints / expectations and poor program execution
- Enterprise level issues materially impact program performance
- Program specific management and technical capability are primary and critical issues
- Cost is the primary "managed to" constraint (program survival)
- The gap between "program expectations" and "program performance" is significant across the board

Critical Program Performance Problems

Identified Issues	Relative Occurrence				
Process Capability	91 %				
Organizational Management	87 %				
Requirements Management	87 %				
Product Testing	83 %				
Program Planning	74 %				
Product Quality - Rework	70 %				
System Engineering	61 %				
Process Adherence	52 %				
Program Schedule	48 %				
Interoperability	43 %				
Decision Making	43 %				

Configuration Management

...

26%

Issue Responsibility Allocations

Complex issues with multiple interactions across all levels of DoD management

Issue Responsibility

<u>Congress</u> - includes Congressional influence as well as program external environmental factors

<u>DoD</u> - includes DoD policy, directives and guidance

<u>Service</u> - includes Service level policy, directives and guidance

<u>**Program Manager</u> - includes all program organic PM-level responsibilities, from both the acquirer and supplier (developer) perspectives**</u>

Systems Engineering - includes all system engineering-level responsibilities from both the acquirer and supplier perspectives

<u>Working Level</u> - includes all the responsibilities of the development staff executing the program-related tasks

Under pressure, Program Managers make trade-off decisions that impact, in order:

- Development progress
- Product technical performance
- Product quality and rework
- System usability
- Cost

Cause and Effect Impacts

- **<u>Process Capability</u>** problems result in:
 - Inadequate Testing
 - Poor Change Management
 - Poor Product Quality
 - Progress Shortfalls
- <u>Requirements Management</u> problems result in:
 - Poor Product Quality
 - Product Rework
 - Progress Shortfalls
- **Organizational and Program Management problems result in:**
 - Inadequate Program Planning
 - Responsibility Conflicts
 - Poor Communications
 - Product Rework
 - Progress Shortfalls

Recurring Issue Patterns

- The diversity of the recurring issue sequences reinforces the complex nature of the interactions and relationships between identified issues
- The large number of unique issue sequences reinforces the need to focus attention on the causative, or triggering, issues
- The expected cause and effect issue relationships are clearly evident in the data
- Solutions will be equally complex

Technical and Management Processes

<u>Analysis Results</u>

- 91% of the assessments had process capability issues (75% triggers)
- 52% of the assessments had process adherence issues (63% triggers)
- 35% of the assessments had no adherence issues but still had capability issues
- Technical vs. Management Process Issues 5:1 Ratio
- Capability vs. Adherence Issues 5:1 Ratio
- Predominant deficiencies: requirements, risk / measurement, testing, systems engineering, change management

Implications

- False assumption that organizational process adherence equates to effective program process capability
- Adherent organizations still have significant performance shortfalls
- Key process concerns:
 - a. organizational standard vs. program process requirement
 - b. impacts of program constraints
 - c. large program team process incompatibilities

Process Examples

- Software versions are not under CM control poor change management - "fixed" defects delivered to the field - "lost" software baselines
- Incompatibility of software processes across subcontractors resulted in the incompatability of products delivered for integration
- Software requirements specifications written by systems engineers without input from software engineers specifications reflected more design than requirements
- 20,000 requirements managed manually
- Risk identification without communication or risk management
- Concurrent SAIV and CAIV management emphasis

Process Issues Model

No Processes in Place	Processes in Place - Total Program Team						No Processes in Place			
ת	No Establis	t Followir shed Proc	ng cesses	Following Established Processes						
ludimen	Process /	Process Adherence Issues		Process Capability Issues				Capable Processes	Innovat	
tary Processes are Missing	Under-performed Processes	De-gradated Processes	Ad Hoc Critical Processes	Outstripped Processes	Uncoordinated Team Processes	Inadequate Standard Processes	Pro Forma Processes	Non-supported Processes	Effective Processes	ive Processes are Missing

Systems Engineering

Analysis Results

- 61% of the assessments had systems engineering issues (23% triggers)
- 11 of the 16 programs that have requirements issues have SE issues
- 43% of the assessments have interoperability issues (50% triggers)
- Predominant deficiencies: non-existent SE, lack of SE expertise, poor SE implementation, dispersion of SE responsibility and authority, existing SE inadequate for program requirements

Implications

- Cost overruns, schedule slips and rework will continue to plague programs
- The most technically complex systems have the most systems engineering issues
- Interoperability of systems is in doubt
- Rapid exploitation of new/innovative technology is difficult

Systems Engineering Examples

- No end-to-end facilities for system level integration and test full functionality first integrated and tested on the aircraft
- Multiple processes and methodologies for loading different software applications on the platform
- No final technical trade-off decision authority Systems Engineering by committee
- Technical task allocations driven by profit objectives, not by domain experience and capability
- Integration used as a substitute for up-front systems engineering
- Family of systems interoperability mandate without establishing technical or management authority across programs - politically allocated responsibilities

A Primary Systems Engineering Issue

System Interoperability

- Is not adequately planned, funded, or managed
- It is a program rather than an enterprise allocated responsibility
- *"Family of Systems" management is largely ad hoc no enterprise portfolio view unfunded mandates*
- A number of new interoperability issues are emerging
 - complex program organizational management
 - complex system testing
 - systems engineering and architecture shortfalls
- Current acquisition strategy trends will most likely make these issues more pervasive
 - direct source Congressional funding
 - acquisition responsibility reallocations

Analysis Summary

- The current DoD program issue profile shows little positive impact from past corrective actions, initiatives, and policy
- The Program Manager and the Development Team must address the majority of the program issues, even if they are caused by enterprise level decisions or behaviors
- Causative issues multiply downstream
- The Program Team creates many of their own performance problems
- There are no "single issue" program performance drivers

Acquisition Trends - Emerging Issues

- Supplier program management and control
- Direct congressional to supplier "plus up" funding
- Massive mission based acquisition and supplier organizations
- Increasing system interoperability and codependency
- Extensive design for mission resiliency
- Fewer and less experienced resources
- Increasing cost consciousness
- Technology integration and update
- CMMI, Evolutionary Spiral, Capability Based Acquisition, Best Practices, others ...

Systemic Analysis Model

ENT	ERPRISE	LEVEL	Program LEVEL							
Congress	Congress DoD] [Program Manager	Systems Engineering	Working Level				
Program Decision Space										
Acquisition Requirements - Process - Politics - Strategy - Assumptions	Policy Culture	Expectations - Cost - Schedule - Performance - Quality <u>Constraints</u> - Funding - Resources - Time - Capability	Mission Allocation Program Portfolio Management	Implementati Issues - Complexity - Capability - Planning - Program Tr - Resource A - Managemen - Organizatio - Interoperat - Conformano - Leadership	ion I I - - - - - - - - - - - - - - - - - -	mplementation ssues Process Product Information Capability Performance				

ACQUISITION ENVIRONMENT

(Threats, Economy, Technology)

TAI Phase 2 Systemic Analysis

The analysis predicts an increasing gap between what is expected and what is capable of being achieved

Key Considerations

- Need to establish performance parameters that can be implemented with success across the life of the program
 - Feasible plan
 - Understood constraints
 - Change tolerance
- Need to improve the capabilities of the development teams
 - Real systems engineering
 - Funded management and technical approaches critical to interoperability
 - Foundational processes reinforced
 - Process capability in addition to process adherence

Key Considerations

- Need to ensure that all program stakeholders agree on an integrated strategy for attacking the high priority overarching program issues:
 - Congress and enterprise
 - Program team
 - Education and technology infrastructures
- Need to augment acquisition policy with:
 - A clear understanding of the complex interactions and constraints that programs are faced with
 - Adequate implementation guidance
 - Directed education

Next in Systemic

- "User Designed" systemic information products
- Systemic Analysis technology improvements
 - Data quality
 - Time phased analysis
 - Predictive analysis
 - Relative impact analysis
- More assessments added to the program base
- Initial Systemic Analysis technology partnerships
 - CeBase
 - NAVAIR
 - Lockheed Martin

Summary

- Systemic analysis based on objective program assessment results provides a unique opportunity to use actual data to make a difference
- The causes of program performance shortfalls are extremely complex - improvement strategies and associated action plans must address this complexity
- As an Enterprise we need to start by re-addressing the performance issues we thought we were already fixing

John McGarry Executive for Performance Management U.S. Army TACOM - ARDEC AMSTA-AR-QAT Picatinny Arsenal, NJ 07806-5000 (973) 724-7007 <u>jmcgarry@pica.army.mil</u>

<u>www.psmsc.com</u> - presentation URL