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Model Development History and Support

*USAF/ESC Effort
—March 1996 through June 1997
« Initial Glue Code Model Definition, Experimental Calibration
*FAA Effort
—Phase 1 (July to October, 1997)
* Glue Code Model Redefinition, Experimental Calibration
— Phase 2 (October 1997 to July 1998)
* Glue Code Model Refinement
* Assessment, Tailoring, and Volatility M odels Defined
— Phase 3 (July 1998 to December 1998)
* Further Data Collection & Model Refinement, Calibration
« Goal: calibrated model available by end 1998
*ONR Effort
—January 1998 through 1999
 Further Refinement of Models; Data Collection & Calibration

« Determination of How Best to Associate COCOTSwith COCOMO |1
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Problem Context: What is (and Isn't) COTS?

- terms from recent Ground System Ar chitectures Workshop

*COTS: Commercial Off-the-Shelf
*GOTS:. Government Off-the-Shelf
*HOTS: Hot Off-the-Shelf
*NOTS: Not Off-the-Shelf

*ROTS: Research Off-the-Shelf
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Problem Context: COTS Phenomena, Pitfalls
and Practices

* You have no control over aCOTS product’s
functionality or performance.

* Most COTS products are not designed to
interoperate with each other.

* You have no control over aCOTS product’s
evolution

» COTS vendor behavior varies widely

Center for Software Engineering 6
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Problem Context: Modeling

COTSH and Custom@
Applications Components

Problem
___________________ §
\
COTS Infrastructure COTSTools
COCOMO II: PVOL, PEXP LTEX, TOOL

Cost Modeling Currently Addressed
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COTS Software I ntegration Cost Sources*

1. COTS Assessment
* Initial Filtering
*Final Selection
2. COTSTaliloring
3. COTSApplication Glue Code Development and (System) Test

4. COTSVolatility Effectson Application Development Cost

*|nitial COCOTS Focus: Softwar e Development;
Operations & Maintenanceto be addressed later

Center for Software Engineering 8
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Objectory Management Checkpoints
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Milestones
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COTS Integration Cost Sources:
1) Assessment
Initial Filtering Effort

_Average Filtering Effort

- {# COTS Candidates
Total Effort = Candidate

Final Selection Effort

Total Effort= S | #COTS Candidata9 (Ave’ageAmem Effort

for Attributein Given Domain
Assessment Candidate i

Attributes

« List of attributesrefined in collaboration with Dr. Elizabeth Bailey

« Effort/candidate is project-dependent, within domain guidelines
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COTS Integration Cost Sources:
1) Assessment - Assessment Attributes
Correctness Understandability Portability

Accuracy Documentation quality Portability

Correctness Simplicity

Testability Functionality
Availability/Robustness Functionality
Availability Ease of use
Fail safe Usability/Human Factors Price

Fail soft Initial purchase/lease!
Fault tolerance Version Compatibility Recurring costs

Input error tolerance Downward compatibility

Redundancy Upward compatibility Maturity

Reliability Product Maturity
Robustness Inter-component Compatibility Vendor Maturity

Safety Compatibility with other components

Security
Security (Access related)
Security (sabotage related)

Product Performance
Execution performance
Information/data capacity
Precision
Memory performance
Response time
Throughput

Interoperability

Flexibility
Extendability
Flexibility

Installation/Upgrade Ease

Installation Ease
Upgrade/Refresh ease

Center for Software Engineering

Vendor Support
Response time for critical problems
Support
Warranty

User Training
User training

Vendor Concessions

Willingness to escrow source code
Willingness to make modifications
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COTS Integration Cost Sources:
2) Tailoring

Total Effort = Tailored at omplexity Level in Domain
S Complexity Level plexity :
Tailoring i
Complexity
Levels

4 COTS Candidat%) @verage Effort at Tailoring )
i

—Fivetailoring effort complexity levels:
Very Low, Low, Nominal, High, Very High
— Differentiated based on number tailored parameters,
difficulty of needed scripts, API iterations, etc.

Center for Software Engineering 15
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COTS Integration Cost Sources:
2) Tailoring - Dimensions of Tailoring Difficulty

Individual Activity & Aid Complexity Ratings
Tailoring Very Low Low Nominal High Very High Corre-
Activities& Aids | (pointvalue=1) | (pointvaue=2) | (pointvaue=3) | (pointvalue=4) | (pointvalue=5) | sponding
Points
Parameter Zerot0 50 parms to | 51 to 100 parmsto | 101 t0 500 parms | 501 to 1000 parms | 1001 or more
i itiali itiali to itiali to itiali parmsto be
initialized.
Script Writing Menu driven; Menu driven; Hand written; Hand written; Hand written;
1to5linescripts; | 6to 10 linescripts;|  11to 25 line 261050 line 51 0r moreline
1t05 scripts 60 15 scripts scripts; scripts; scripts;
needed. needed. 161030 scripts | 31to50scripts | 51or morescripts
needed. needed. needed.
1/0 Report & GUI ‘Automated or ‘Automated or Automatedor | Handwrittenor | Hand written o
Screen Specification & | standard templates | standard templates | standard templates | custom designed; | custom designed;
Layout used; used; used; 261050 51 0r more
1to5 61015 161025 reports/screens | reports/screens
needed. needed. | e
needed. needed. needed.
Security/Access Tsecurity level; | 2security levels | 3 security levels | 4security levels | 5 or more security
Protocol Initialization |  1to20 user 211050 user 5110 75 user 76t0 100 user levels
& Set-up profiles; profiles; profiles; profiles; 101 or more user
Linput screenuser. 2input 3input 4input profiles;
5ormoreinput | ----eev
Availability of COTS | No tools avallable. N/A N/A N/A Tools are available.
Tailoring Tools

Total Point Score =

Center for Software Engineering 16
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COTS Integration Cost Sources:
3) Glue Code Development and Test

Total Effort =Ae [(size)(1+breakage)]Eo3 P (effort multipliers)

* A - alinear scaling constant

» Size - of thegluecodein SLOC or FP

* Breakage - of the glue code dueto changein
requirements and/or COTSvolatility

 Effort Multipliers
ranging VL toVH

* B - an architectural scale factor with settingsVL to VH

Center for Software Engineering 17
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COTS Integration Cost Sources:
3) Glue Code Development and Test - Glue Code Cost Drivers

Personnel Drivers

1) ACIEP- COTS Integrator Experience with Product

2) ACIPC - COTS Integrator Personnel Capability

3) AXCIP- Integrator Experience with COTS Integration Processes
4) APCON - Integrator Personnel Continuity

COTS Component Drivers

5) ACPMT - COTS Product Maturity

6) ACSEW - COTS Supplier Product Extension Willingness

7) APCPX - COTS Product Interface Complexity

8) ACPPS- COTS Supplier Product Support

9) ACPTD - COTS Supplier Provided Training and Documentation

Application/System Drivers

10) ACREL - Constraints on Application System/Subsystem Reliability
11) AACPX - Application Interface Complexity

12) ACPER - Constraints on COTS Technical Performance

13) ASPRT - Application System Portability

Nonlinear Scale Factor

1) AAREN - Application Architectural Engineering 18
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COTS Integration Cost Sources:
4) Increased Application Effort Due to COTS Volatility

Total Effort = (Application Effort) e [M] * (EAF)
100 COTS

101+ S
Total Effort = (Application Effort) e [(1+ M) ] « (EAF)

1+BRAK
COTS
BRAK COTS: % application code breakage dueto COTSvolatility
BRAK : % application code breakage otherwise
S : COCOMO |1 scalefactor
EAF : Effort Adjustment Factor (product of effort multipliers)
Center for Software Engineering 19
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COTS Integration Cost Sources:
4) Increased Application Effort Dueto COTS Volatility
- COCOMO 1| Scale Factors
Scale Factor Very Low L ow Nominal High Very High ExtraHigh
Precedentedness thoroughly largely somewhat generally largely familiar thoroughly
unprecedented | unprecedented | unprecedented familiar familiar
Development rigorous occasional some genera some general goals
Flexibility relaxation relaxation conformity conformity
Architecture/Risk little (20%) some (40%) often (60%) generally mostly (90%) full (100%)
Resolution (75%)
Team Cohesion some difficult basically largely highly seamless N/A
interactions cooperative cooperative cooperative interactions
interactions
ProcessMaturity | CMM Level 1 | CMM Level2 | CMM Level 3 | CMM Level 4 | CMM Level 5 N/A
* percentage of module interfaces specified, percentage of significant risks eliminated.
Center for Software Engineering 20
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Total COTS Integration Cost Estimate

Total Integration Effort (in Person-Months) =
Assessment Effort + Tailoring Effort + Glue Code Effort + Volatility Effort

where

Total integration Cost =
(Total Integration Effort)  ($$/Per son-M onth)

Center for Software Engineering 21
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Prospective COCOTS Follow-ons

*Extensive data collection and conditioning

*Recalibration and iteration of the model within current structure

*Experimental usage and refinement, including exploration of other cost drivers and
model forms

*Modeling of schedule estimation and activity distribution

*Integration with COCOMO Il estimation model

*More extensive model implementation

*Modeling other COTS related costs

—Licenses, training, maintenance, hardware

Center for Software Engineering 22
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Modeling Other COTS Related Costs

eLargely a (unit cost) * (# units) framework

—Unit costs vary by quantity, platform, time
*Need to consider time-phasing of acquisition, implementation, operations &
maintenance

*Biggest challenge will be complex, dynamic COTS price structures
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Extended COCOTS Model
Cost (t) =

Cost [SW development] -- COCOMO I, others
+ Cost [SW maintenance] (t) -- COCOMO I, others
+ Cost [SW COTSintegration] --COCOTSs
+ Cost [SW COTSinteg. maint.](t) -- COCOTS
+ Cost [SW COTS9](t) -- (see chart following)
+ Cost [HW COTg](t) -- (see chart following)

Center for Software Engineering 24
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Estimating Cost of Software COTS

Cost [SW COTS|(t) =

Cost[acquisition office](t)

+ Cost[licenses|(t) {= Cost[#licenses#featur es#platforms](t)}

+ Cost[implementation](t) {= Cost[training](t) + Cost[install](t)}

+ Cost[Op. & Mnt.](t) {= Cost[maint. lic's.](t) + Cost[support](t)}
Center for Software Engineering 25

UNIVERSITY OF
SOUTHERN CALIFORNIA

Estimating Cost of Hardware COTS

Cost[HW COTS|(t) =
Cost[acquisition office](t)
+ S{Cost[acquistion];(t) + Cost[implementation];(t) + Cost[O& M];(t)}
for

i = processors, storage, workstation, communications

Center for Software Engineering 26
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Conclusions

*COCOTS provides solid framework for estimating software COTS integration cost
—needs further data, calibration, iteration

—current spreadsheet model could be used experimentally
*COCOTS can be extended to cover other COTS related costs

—biggest challenge will be complex, dynamic COTS price structures
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Proposal:

*Go with single project-level set of ratings
rather than separate ratings per component

*Replace current APVOL definition (#rel easesCOTS component)
by % BRAK dueto COTSvolatility «In glue code: S\J
*Replace “COTS/NDI” by “COTS' +in application

Pros Cons

*Less datato collect eHarder for usersto average ratings

*Avoids formidable :
rating-aggregation problems °N®d Qata entry aggregatl on .

«Provides approach for modl guiddli neﬁ_for multi-component entries
#4: added App Develop effort *FAA buy-in to current approach

*NDI handled by COCOMO I d4dS8: soffware Engineering 28
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Rating-Aggregation Problems [l @

COTS APP

*Can't just average ratings

-relative # interactions of COTS
-relative interaction complexity
-volatility effects

-breskage per release
-aggregation of release updates

#COTS 2 4 1
*No simple formulas for aggregating those L I

effects

Center for Software Engineering
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Disposition:

*Go with project-level BRAK GLUE parameter
-avoid aggregation difficulties
-includes effects of application volatility
-compatible with BRAK COTS approach for
added applications effort

L eave other cost drivers at component level
-easier user datalrating entry
-start with simple averaging of ratings

*Replace “COTS/NDI” by “COTS’

Center for Software Engineering
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BRAK GLUE Data Definition:

Added breakage in Glue App code due to COTS volatility
*Relative to breakage with no volatility
«Judgement based function of several factors
-# releases during development for each COTS component
-strategy for batching rel eases during devel opment
-number and complexity of interaction among COTS,

applications components

Center for Software Engineering 31
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M odel:
1.01+S
A AppEffort 100 COTS APP
App Effort (1+ BRAK ) 101+S
100 « (EAP) \pp

101+S
A App Effort = App Effort (_1 +B+Bc ) -

1+B coTs

Bc 1.01+S
A\ App Effort = App Effort { 1+ ) .
PP PP ( 1+B (EAR) COTS
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