UNIVERSITY OF
SOUTHERN CALIFORNIA

COCOTS
(COnstructive COTYS)
Softwar e I ntegration
Cost Model: An Overview

Dr. Barry Boehm

USC Center for Software Engineering

Copyright 1997, 1998
University of Southern California

UNIVERSITY OF
SOUTHERN CALIFORNIA

USC Center for Software Engineering

Points of Contact at USC-CSE in Los Angeles

Mr. Christopher Abts (primary graduate researcher)............. (213) 740-6470
Ms. Jennifer Browning (CSE Office Administrator)................ (213) 740-5703
Dr. Barry W. Boehm (CSE Director)..........c.oevvveiivieneenennnenn (213) 740-8163
USC Center for Software Engineering FAX line..................... (213) 740-4927
COTS Software Research Effort E-Mail.................... cots-info@sunset.usc.edu
World Wide Web page.................. http: //sunset.usc.edu/COCOTS/cocots.html

Additional Contact at Software Metrics, Inc. in Virginia (near D.C.)

Dr. Elizabeth (Betsy) Bailey.....(703) 754-0115
FAXline......oooooiiiiiiiiins(703) 754-0115
E-Mail....ooooii bkbailey@erols.com

Center for Software Engineering

UNIVERSITY OF
SOUTHERN CALIFORNIA

Qutline

* Model Development History and Support
* Problem Context

» COTS Softwar e I ntegration Cost Sour ces
* COCOTSvs. COCOMO Cost Sources

* COT S Assessment

* COTSTailoring

* COTS Glue Code Development and Test

* COTSVolatility Effects on Application Development Cost
» Total COTSIntegration Cost Estimate

* Prospective COCOTS Follow-ons

* Conclusions

Center for Software Engineering

UNIVERSITY OF
SOUTHERN CALIFORNIA

Model Development History and Support

*USAF/ESC Effort
—March 1996 through June 1997
« Initial Glue Code Model Definition, Experimental Calibration
*FAA Effort
—Phase 1 (July to October, 1997)
* Glue Code Model Redefinition, Experimental Calibration
— Phase 2 (October 1997 to July 1998)
* Glue Code Model Refinement
* Assessment, Tailoring, and Volatility M odels Defined
— Phase 3 (July 1998 to December 1998)
* Further Data Collection & Model Refinement, Calibration
« Goal: calibrated model available by end 1998
*ONR Effort
—January 1998 through 1999
 Further Refinement of Models; Data Collection & Calibration

« Determination of How Best to Associate COCOTSwith COCOMO |1

Center for Software Engineering

UNIVERSITY OF
SOUTHERN CALIFORNIA

Problem Context: What is (and Isn't) COTS?

- terms from recent Ground System Ar chitectures Workshop

*COTS: Commercial Off-the-Shelf
*GOTS:. Government Off-the-Shelf
*HOTS: Hot Off-the-Shelf
*NOTS: Not Off-the-Shelf

*ROTS: Research Off-the-Shelf

Center for Software Engineering 5

UNIVERSITY OF
SOUTHERN CALIFORNIA

Problem Context: COTS Phenomena, Pitfalls
and Practices

* You have no control over aCOTS product’s
functionality or performance.

* Most COTS products are not designed to
interoperate with each other.

* You have no control over aCOTS product’s
evolution

» COTS vendor behavior varies widely

Center for Software Engineering 6

UNIVERSITY OF
SOUTHERN CALIFORNIA
Problem Context: Modeling

COTSH and Custom@
Applications Components

Problem
___________________ §
\
COTS Infrastructure COTSTools
COCOMO II: PVOL, PEXP LTEX, TOOL

Cost Modeling Currently Addressed

Center for Software Engineering 7

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Software I ntegration Cost Sources*

1. COTS Assessment
* Initial Filtering
*Final Selection
2. COTSTaliloring
3. COTSApplication Glue Code Development and (System) Test

4. COTSVolatility Effectson Application Development Cost

*|nitial COCOTS Focus: Softwar e Development;
Operations & Maintenanceto be addressed later

Center for Software Engineering 8

STAFFING

COCOMO Cost Sources

1 (No COTSin System)
. . »
L0 LCA ! IO
ey " .
review (D)
Application Code Development T‘._:
Integration and Test Without Field
The Use of COTS in System Test
L0 = Life Cyele Ohjeetives
L.CA - Life Cyele Architecture - COCOMO Effort Estimate
I - Undtial Chperstional O apability
—pp-

TIME °

STAFFING

COCOMO vs. COCOTS Cost Sources

f (COTSin System)
EI.[ZI} ”._QE “H::
(reqs (PDR)
review)

3y COTS Application Glue Code

r Development and
1) COTS 2y COTs {System) Test Heia
Assessment Tailoring Tesl,
Fivld
Application Code Development Test

Integration und Test Separate
from COTS Effects

4) Imcreased Application EfTort due to S Volatility

LOO - Life Cycle Objectives - COCOMO Effert Estimate
LA = Life Cycle Architectare

10K = Imitial nprwlhmﬂf:tpﬂﬂul‘_t |:I COCOTS Effer Estimite Camponents

P ——————
TINME 10
LI | -

vl

Objectory Management Checkpoints

Inception Elaboration Construction Transition
Iteration 1 Iteration 2 | Iteration 3 Iteration 4 | Iteration 5 | Iteration 6 Iteration 7
Milestones
LCO LCA 10C Full
Release

Strategic focus on global concerns of the entire software project

v~ A A A A A A A

Tactical focus on local concerns of current iteration

IR S T T X
Assessments - perjodic synchronization of stakeholder expectations

RATIONAL -

uuuuuuuuuuuuuuuuuu

Objectory Information Set Evolution

Engineering Manufacturing
Stage Stage

Inception Elaboration Construction Transition

o LCO) LCA fele
Feasibility Architecture Usable Product
Iterations Iterations Iterations Releases

R¥DY¥ | §D
EYEYMEE
Qfsirlr

Management

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Integration Cost Sources:
1) Assessment
Initial Filtering Effort

_Average Filtering Effort

- {# COTS Candidates
Total Effort = Candidate

Final Selection Effort

Total Effort= S | #COTS Candidata9 (Ave’ageAmem Effort

for Attributein Given Domain
Assessment Candidate i

Attributes

« List of attributesrefined in collaboration with Dr. Elizabeth Bailey

« Effort/candidate is project-dependent, within domain guidelines

Center for Software Engineering 13
UNIVERSITY OF
ey
SOUTHERN CALIFORNIA
COTS Integration Cost Sources:
1) Assessment - Assessment Attributes
Correctness Understandability Portability

Accuracy Documentation quality Portability

Correctness Simplicity

Testability Functionality
Availability/Robustness Functionality
Availability Ease of use
Fail safe Usability/Human Factors Price

Fail soft Initial purchase/lease!
Fault tolerance Version Compatibility Recurring costs

Input error tolerance Downward compatibility

Redundancy Upward compatibility Maturity

Reliability Product Maturity
Robustness Inter-component Compatibility Vendor Maturity

Safety Compatibility with other components

Security
Security (Access related)
Security (sabotage related)

Product Performance
Execution performance
Information/data capacity
Precision
Memory performance
Response time
Throughput

Interoperability

Flexibility
Extendability
Flexibility

Installation/Upgrade Ease

Installation Ease
Upgrade/Refresh ease

Center for Software Engineering

Vendor Support
Response time for critical problems
Support
Warranty

User Training
User training

Vendor Concessions

Willingness to escrow source code
Willingness to make modifications

14

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Integration Cost Sources:
2) Tailoring

Total Effort = Tailored at omplexity Level in Domain
S Complexity Level plexity :
Tailoring i
Complexity
Levels

4 COTS Candidat%) @verage Effort at Tailoring)
i

—Fivetailoring effort complexity levels:
Very Low, Low, Nominal, High, Very High
— Differentiated based on number tailored parameters,
difficulty of needed scripts, API iterations, etc.

Center for Software Engineering 15

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Integration Cost Sources:
2) Tailoring - Dimensions of Tailoring Difficulty

Individual Activity & Aid Complexity Ratings
Tailoring Very Low Low Nominal High Very High Corre-
Activities& Aids | (pointvalue=1) | (pointvaue=2) | (pointvaue=3) | (pointvalue=4) | (pointvalue=5) | sponding
Points
Parameter Zerot0 50 parms to | 51 to 100 parmsto | 101 t0 500 parms | 501 to 1000 parms | 1001 or more
i itiali itiali to itiali to itiali parmsto be
initialized.
Script Writing Menu driven; Menu driven; Hand written; Hand written; Hand written;
1to5linescripts; | 6to 10 linescripts;| 11to 25 line 261050 line 51 0r moreline
1t05 scripts 60 15 scripts scripts; scripts; scripts;
needed. needed. 161030 scripts | 31to50scripts | 51or morescripts
needed. needed. needed.
1/0 Report & GUI ‘Automated or ‘Automated or Automatedor | Handwrittenor | Hand written o
Screen Specification & | standard templates | standard templates | standard templates | custom designed; | custom designed;
Layout used; used; used; 261050 51 0r more
1to5 61015 161025 reports/screens | reports/screens
needed. needed. | e
needed. needed. needed.
Security/Access Tsecurity level; | 2security levels | 3 security levels | 4security levels | 5 or more security
Protocol Initialization | 1to20 user 211050 user 5110 75 user 76t0 100 user levels
& Set-up profiles; profiles; profiles; profiles; 101 or more user
Linput screenuser. 2input 3input 4input profiles;
5ormoreinput | ----eev
Availability of COTS | No tools avallable. N/A N/A N/A Tools are available.
Tailoring Tools

Total Point Score =

Center for Software Engineering 16

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Integration Cost Sources:
3) Glue Code Development and Test

Total Effort =Ae [(size)(1+breakage)]Eo3 P (effort multipliers)

* A - alinear scaling constant

» Size - of thegluecodein SLOC or FP

* Breakage - of the glue code dueto changein
requirements and/or COTSvolatility

 Effort Multipliers
ranging VL toVH

* B - an architectural scale factor with settingsVL to VH

Center for Software Engineering 17

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Integration Cost Sources:
3) Glue Code Development and Test - Glue Code Cost Drivers

Personnel Drivers

1) ACIEP- COTS Integrator Experience with Product

2) ACIPC - COTS Integrator Personnel Capability

3) AXCIP- Integrator Experience with COTS Integration Processes
4) APCON - Integrator Personnel Continuity

COTS Component Drivers

5) ACPMT - COTS Product Maturity

6) ACSEW - COTS Supplier Product Extension Willingness

7) APCPX - COTS Product Interface Complexity

8) ACPPS- COTS Supplier Product Support

9) ACPTD - COTS Supplier Provided Training and Documentation

Application/System Drivers

10) ACREL - Constraints on Application System/Subsystem Reliability
11) AACPX - Application Interface Complexity

12) ACPER - Constraints on COTS Technical Performance

13) ASPRT - Application System Portability

Nonlinear Scale Factor

1) AAREN - Application Architectural Engineering 18

UNIVERSITY OF
SOUTHERN CALIFORNIA

COTS Integration Cost Sources:
4) Increased Application Effort Due to COTS Volatility

Total Effort = (Application Effort) e [M] * (EAF)
100 COTS

101+ S
Total Effort = (Application Effort) e [(1+ M)] « (EAF)

1+BRAK
COTS
BRAK COTS: % application code breakage dueto COTSvolatility
BRAK : % application code breakage otherwise
S : COCOMO |1 scalefactor
EAF : Effort Adjustment Factor (product of effort multipliers)
Center for Software Engineering 19
UNIVERSITY OF
SOUTHERN CALIFORNIA
COTS Integration Cost Sources:
4) Increased Application Effort Dueto COTS Volatility
- COCOMO 1| Scale Factors
Scale Factor Very Low L ow Nominal High Very High ExtraHigh
Precedentedness thoroughly largely somewhat generally largely familiar thoroughly
unprecedented | unprecedented | unprecedented familiar familiar
Development rigorous occasional some genera some general goals
Flexibility relaxation relaxation conformity conformity
Architecture/Risk little (20%) some (40%) often (60%) generally mostly (90%) full (100%)
Resolution (75%)
Team Cohesion some difficult basically largely highly seamless N/A
interactions cooperative cooperative cooperative interactions
interactions
ProcessMaturity | CMM Level 1 | CMM Level2 | CMM Level 3 | CMM Level 4 | CMM Level 5 N/A
* percentage of module interfaces specified, percentage of significant risks eliminated.
Center for Software Engineering 20

10

UNIVERSITY OF
SOUTHERN CALIFORNIA

Total COTS Integration Cost Estimate

Total Integration Effort (in Person-Months) =
Assessment Effort + Tailoring Effort + Glue Code Effort + Volatility Effort

where

Total integration Cost =
(Total Integration Effort) ($$/Per son-M onth)

Center for Software Engineering 21

UNIVERSITY OF
SOUTHERN CALIFORNIA

Prospective COCOTS Follow-ons

*Extensive data collection and conditioning

*Recalibration and iteration of the model within current structure

*Experimental usage and refinement, including exploration of other cost drivers and
model forms

*Modeling of schedule estimation and activity distribution

*Integration with COCOMO Il estimation model

*More extensive model implementation

*Modeling other COTS related costs

—Licenses, training, maintenance, hardware

Center for Software Engineering 22

11

UNIVERSITY OF
SOUTHERN CALIFORNIA

Modeling Other COTS Related Costs

eLargely a (unit cost) * (# units) framework

—Unit costs vary by quantity, platform, time
*Need to consider time-phasing of acquisition, implementation, operations &
maintenance

*Biggest challenge will be complex, dynamic COTS price structures

Center for Software Engineering 23

UNIVERSITY OF
SOUTHERN CALIFORNIA

Extended COCOTS Model
Cost (t) =

Cost [SW development] -- COCOMO I, others
+ Cost [SW maintenance] (t) -- COCOMO I, others
+ Cost [SW COTSintegration] --COCOTSs
+ Cost [SW COTSinteg. maint.](t) -- COCOTS
+ Cost [SW COTS9](t) -- (see chart following)
+ Cost [HW COTg](t) -- (see chart following)

Center for Software Engineering 24

12

UNIVERSITY OF
SOUTHERN CALIFORNIA

Estimating Cost of Software COTS

Cost [SW COTS|(t) =

Cost[acquisition office](t)

+ Cost[licenses|(t) {= Cost[#licenses#featur es#platforms](t)}

+ Cost[implementation](t) {= Cost[training](t) + Cost[install](t)}

+ Cost[Op. & Mnt.](t) {= Cost[maint. lic's.](t) + Cost[support](t)}
Center for Software Engineering 25

UNIVERSITY OF
SOUTHERN CALIFORNIA

Estimating Cost of Hardware COTS

Cost[HW COTS|(t) =
Cost[acquisition office](t)
+ S{Cost[acquistion];(t) + Cost[implementation];(t) + Cost[O& M];(t)}
for

i = processors, storage, workstation, communications

Center for Software Engineering 26

13

UNIVERSITY OF
SOUTHERN CALIFORNIA

Conclusions

*COCOTS provides solid framework for estimating software COTS integration cost
—needs further data, calibration, iteration

—current spreadsheet model could be used experimentally
*COCOTS can be extended to cover other COTS related costs

—biggest challenge will be complex, dynamic COTS price structures

Center for Software Engineering 27

UNIVERSITY OF
SOUTHERN CALIFORNIA

Proposal:

*Go with single project-level set of ratings
rather than separate ratings per component

*Replace current APVOL definition (#rel easesCOTS component)
by % BRAK dueto COTSvolatility «In glue code: S\J
*Replace “COTS/NDI” by “COTS' +in application

Pros Cons

*Less datato collect eHarder for usersto average ratings

*Avoids formidable :
rating-aggregation problems °N®d Qata entry aggregatl on .

«Provides approach for modl guiddli neﬁ_for multi-component entries
#4: added App Develop effort *FAA buy-in to current approach

*NDI handled by COCOMO I d4dS8: soffware Engineering 28

UNIVERSITY OF
SOUTHERN CALIFORNIA

Rating-Aggregation Problems [l @

COTS APP

*Can't just average ratings

-relative # interactions of COTS
-relative interaction complexity
-volatility effects

-breskage per release
-aggregation of release updates

#COTS 2 4 1
*No simple formulas for aggregating those L I

effects

Center for Software Engineering

29

UNIVERSITY OF
SOUTHERN CALIFORNIA

Disposition:

*Go with project-level BRAK GLUE parameter
-avoid aggregation difficulties
-includes effects of application volatility
-compatible with BRAK COTS approach for
added applications effort

L eave other cost drivers at component level
-easier user datalrating entry
-start with simple averaging of ratings

*Replace “COTS/NDI” by “COTS’

Center for Software Engineering

30

15

UNIVERSITY OF
SOUTHERN CALIFORNIA

BRAK GLUE Data Definition:

Added breakage in Glue App code due to COTS volatility
*Relative to breakage with no volatility
«Judgement based function of several factors
-# releases during development for each COTS component
-strategy for batching rel eases during devel opment
-number and complexity of interaction among COTS,

applications components

Center for Software Engineering 31

UNIVERSITY OF
SOUTHERN CALIFORNIA

M odel:
1.01+S
A AppEffort 100 COTS APP
App Effort (1+ BRAK) 101+S
100 « (EAP) \pp

101+S
A App Effort = App Effort (_1 +B+Bc) -

1+B coTs

Bc 1.01+S
A\ App Effort = App Effort { 1+) .
PP PP (1+B (EAR) COTS

Center for Software Engineering 32

16

