

DD(X) Software Measurement Setting the Foundation for Objective Program Oversight and Informed Decision Making

Kevin Richins, DD(X) SW Engineering Manager

PSM User Group Conference 2003, Keystone CO

- DD(X) SW Engineering (SWE) What does that mean?
- SW Measurement A STANDARD Definition
- SW Measurement in the context of a US DoD Acquisition Program Office (DDx-APO)
- DD(X) SW Measurement Data Model
- DD(X) Software Tracking & Oversight Process (STOP)

DD(X) System Characteristics

- ~ \$3,000,000,000 contract through CDR
- ~ 70,000 Lines in IMS
- DD(X) is a Weapons Platform
 - ✓ Sensor System
 - C4ISR System
 - Multiple Weapon Systems
 - Ship Control System
 - Logistics / Support System
- ~ 30 Organizations supporting DD(X) development

- **26 Organizations developing / integrating software**
- ~ 25 Million SLOC (not including MIS)
- Total Ship System Integration vice traditional stove-piped ship systems
- ~ \$400,000,000 SW budget through CDR
- SW Budget could approach \$ 1B through 5th Ship
- DD(X) Software MUST BE ENGINEERED not developed or crafted.

- "Engineering" means something
 - ✓ Process Based, Results Oriented
 - ✓ Discipline & Rigor
 - ✓ Quantifiable Methods & Results
- IEEE Computer Society Definition of SWE
 - \checkmark "The application of a
 - systematic,
 - disciplined,
 - <u>quantifiable</u>

approach to the development, operation, and maintenance of software;"

IEEE Standard Glossary of Software Engineering Terminology

For DD(X), Software Measurement is defined as:

- ✓ "The Systematic Application of
 Formal Methods, Processes, and Procedures
 to Quantify Attributes of the Software Process
 and the associated Software Work Products"
- Sources for the DD(X) Approach to Software Measurement include:
 - ✓ Practical Software & Systems Measurement
 - Capability Maturity Model Integrated
 - Measurement and Analysis Process Area
 - Quantitative Project Management Process Area
 - ✓ ISO 15939

Software Measurement & DD(X) APO

PMS500 SW Engineering is responsible for four (4) things:

- Encourage, Facilitate, and Promote
 Engineering Behavior ***
- ✓ <u>Track and evaluate industry performance</u> <u>against known practices that reduce risk ***</u>

Report evaluation results to PMS500 Leadership

 Identify any emerging technologies, methods, etc. that may benefit the program

DD(X) SW Measurement Process Model

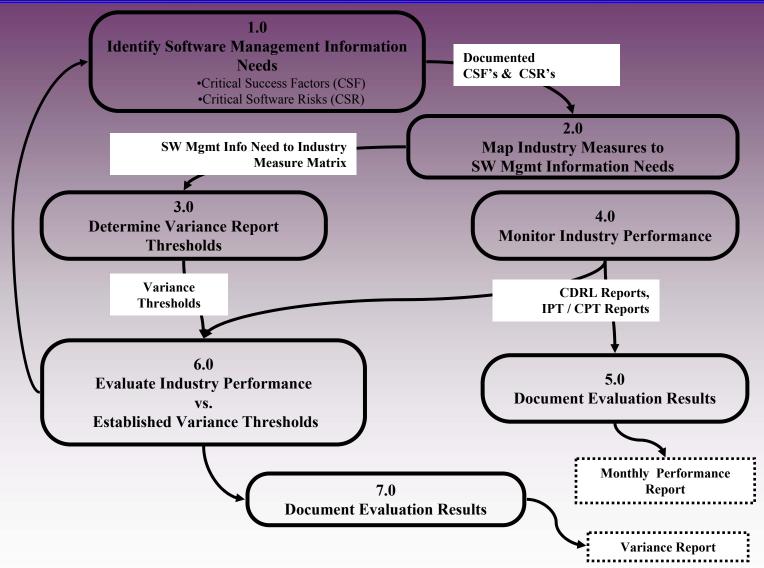


Figure 1 : Software Tracking & Oversight Process

- **Stated Program Goals**
 - Zero Cost Growth
 - On-Time Development
 - 100% Contracted Functionality
 - Zero Priority 1/2 Defects
- > Identified Program Risks
 - Concurrent Engineering
 - Distributed Development

DD(X) Software Measurement System Drivers

Adhere to Measurement System Design Constraints

- Encourage, Facilitate, and Promote Engineering Behavior
 - What you measure will affect the behavior of those who execute the processes or develop the work products being measured

DD(X) Software Measurement System Drivers

Track Critical Engineering Success Factors

- ✓ People
 - Sufficient, Capable, and Stable Staff
- Process
 - Adherence to Capable Processes
- Technology
 - Balance Innovation & Risk
- ✓ Product
 - Complete, Concise, & Quality Technical Work <u>Products</u>
 - Complete, Concise, & Quality Management Work Products
 - Fully Functional, High Quality Software

Sufficient

- \checkmark Is there enough people to get the job done?
 - Staffing Profiles (Planned vs. Actual)
- Stable
 - Is the work environment sufficiently stable so people can work to their potential?
 - Turnover (Technical, Management)
- Capable
 - ✓ Are the people capable of performing the work required?
 - % Qualified

Process Indicators

Capability

Are the processes capable of delivering quality and performance within cost / schedule constraints?

- Adherence to Best Practices
 - IEEE 12207, IEEE 1012, ISO 15939, etc.
 - CMMI, SPMN
- Performance Results
 - Cost Variance, Schedule Variance, Defect Escapes

Compliance

✓ Are the capable processes being following?

- Process Evaluation Results
- Work Product Evaluation

Technology Indicators

Maturity

- ✓ Does the selected technologies balance innovation with risk?
 - Bleeding Edge vs. Leading Edge

Change Tolerance

- ✓ Will the selected technologies provide the best long term value to the Navy and provide for system enhancements over time?
 - Proprietary vs. Open Source

Work Product Indicators

Quality

- Are the software work products of requisite quality?
 - Management Products (Adhere to standards?)
 - SDP, Risk Plan, CM Plan, Q-Mgmt Plan
 - Technical Products (Clear, Concise, Complete?)
 - Requirements Specifications, Design Documentation
 - SW Code, Test Cases

> Performance

✓ Does the software perform in accordance with our expectations?

- Measures of Performance (MOP)
- Technical Performance Measures (TPM)
- Critical Technical Parameters (CTP's)

Measurement Data Table

Critical Success Factor	Indicator	TD	PM	Periodic Reports During								
											S y Q T	
People	•Staff Sufficiency			Q	Q	Q	Q	Q	Q	Q	Q	
	•Staff Capability	85%	75%	Q	Q	Q	Q	Q	Q	Q	Q	
	•Staff Stability	85%	75%	Q	Q	Q	Q	Q	Q	Q	Q	
Process	•Capability	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
	•Compliance	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
	•Cost Performance	5%	10%	М	Μ	М	Μ	M	Μ	Μ	Μ	
	•Schedule Performance	5%	10%	М	Μ	М	Μ	M	Μ	М	Μ	
	•Quality Performance	<u></u>	<u>;;;</u>	Μ	Μ	М	М	Μ	М	Μ	М	
Tech-nology	Maturity (Leading-Bleeding Edge)	na	na	As Introduced								
	Longevity	na	na	As Introduced								
	Sustainability (Open – Proprietary)	na	na	As Introduced								

Measurement Data Table

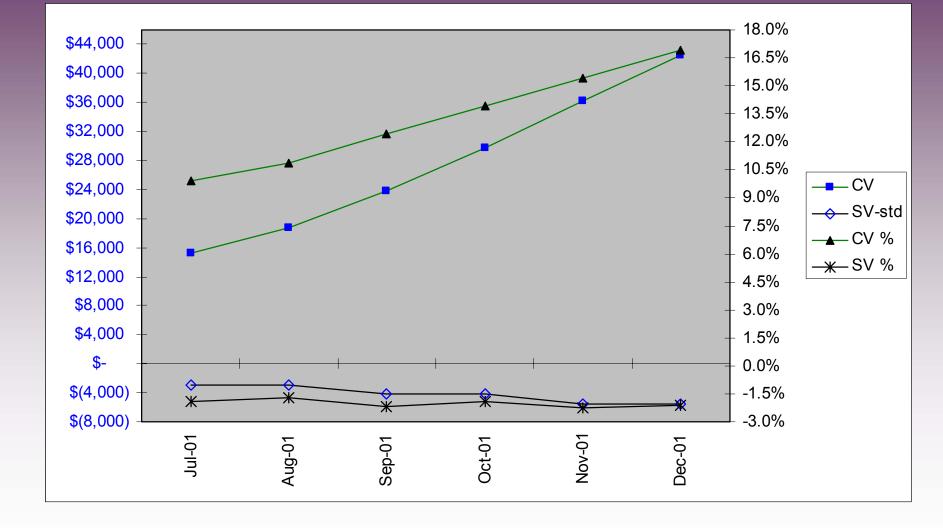
Critical Success Factor	Indicator			Periodic Reports During								
											S	
Product – Mgmt	Clear, Concise, and Complete SDP	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
	Clear, Concise, and Complete CM Plan	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
	Clear, Concise, and Complete RM Plan	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
	Clear, Concise, and Complete QA Plan	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
Product – Tech – Reqts	Traceability: R 2 D	90%	75%	М	М	M	М	М	М	М	М	
	Stability	95%	85%	М	М	М	М	М	М	Μ	М	
	Clarity	na	na	М	М	M	М	М	М	М	М	
	Testability	na	na	Q	Q	Q	Q	Q	Q	Q	Q	
Product – Tech – Design	Traceability: D 2 C	90%	75%	М	М	M	М	М	М	М	М	
	Stability	95%	85%	М	М	М	М	М	М	Μ	М	
	Clarity	na	na	М	Μ	М	М	М	М	М	М	
	Testability	na	na	Q	Q	Q	Q	Q	Q	Q	Q	

Collect & Analyze Industry Measurement Reports

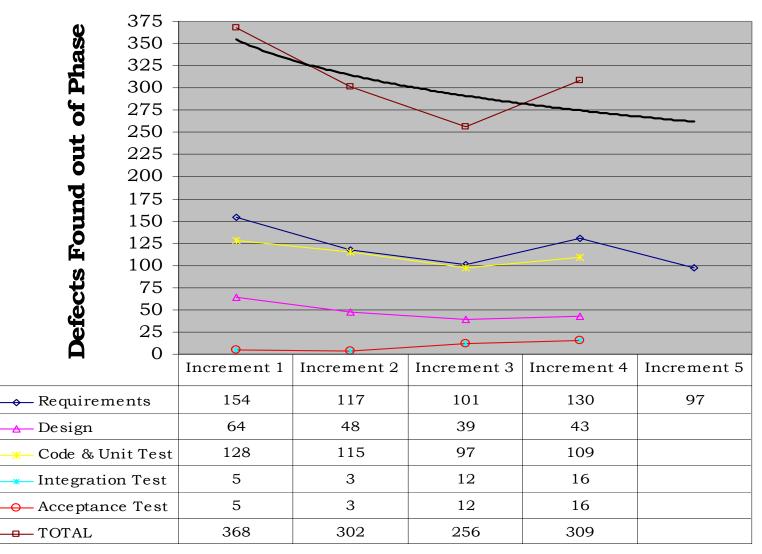


DD(X) Design Agent prepares a 'Composite Measurement Report' each month

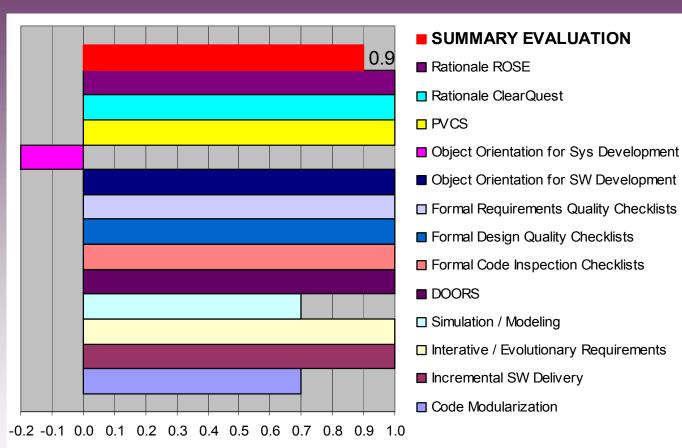
- Content was negotiated between the DA and PMS500
- Includes Indicators, Derived, AND Base Measures
- PMS500 SW Engineering (SWEng) extracts pre-selected data (base / derived measures) from the CMR
- SWEng analyzes measurement data for variances and trends.
- A Composite SW Measurement Brief is prepared by SWEng for PMS500 leadership


Sample Measurement Report

Process - Cost / Schedule Variance

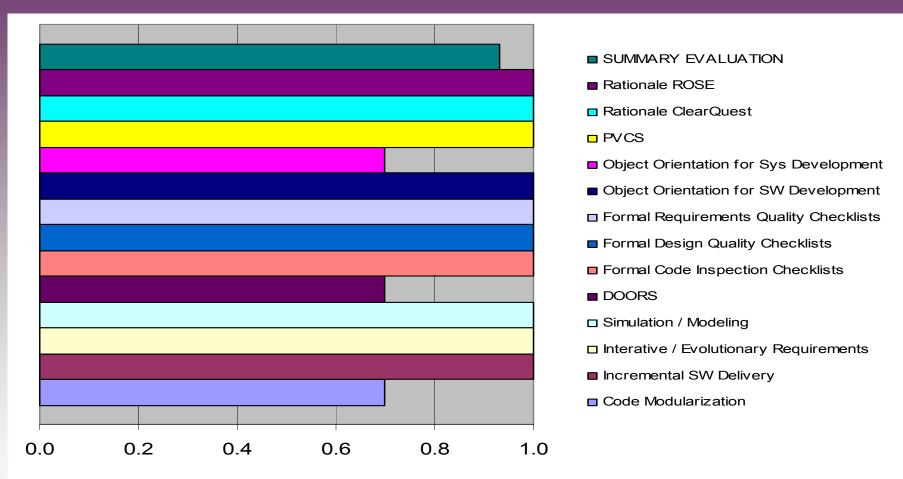


Process - Escapes by Activity & Phase



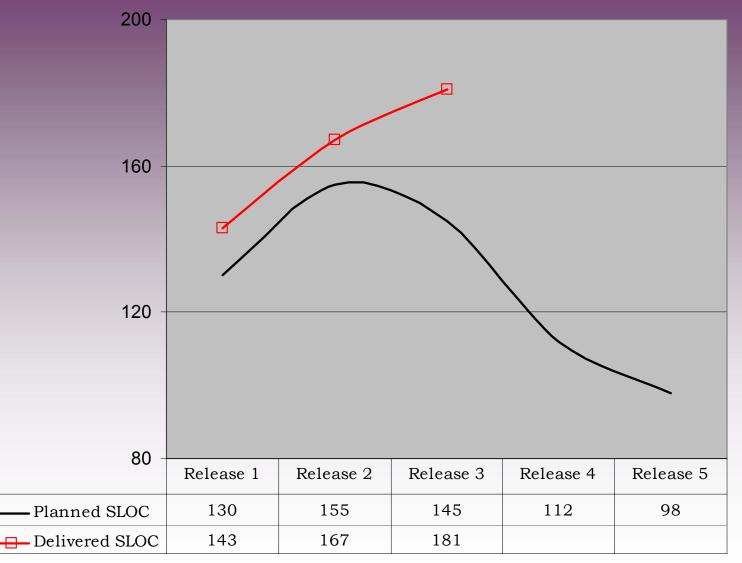
Technology - Maturity

State of the Art = .80 - 1.0Leading Edge = .40 - .70State of Practice = .10 - .30Bleeding Edge = -.20 - 0.0



Technology -Implementation

 Very Effective
 = .08 - 1.0


 Effective
 = .40 - .70

 Nominal
 = .10 - .30

 Counter Effective
 = -.20 - 0.0

CPM's - SW Size (KSLOC)

- The Process and Data Models from PSM have been tremendously valuable in developing the DD(X) Software Tracking & Oversight Program
- Guidance from PSM, CMMI, and ISO15939 continues to be useful tools as DD(X) refines it's approach to software measurement
- As DD(X) proceeds forward, the quantitative foundation that has been established will bring great benefits to DD(X) leadership in making mid-course corrections