
©2006 BAE Systems.

COSYSMO Extension: Reuse

Gan Wang

The Problem

• Everything has a legacy
• In particular, most of the systems we build and programs we execute are

based on legacy systems, architecture, and experience
– Rarely are we building something completely new from the “clean slate”.

• Academic COSYSMO considers all size drivers (Req, Int, Alg, Scn) new,
which is inadequate in estimating the systems we build today

• Therefore, we must define reuse for estimating the size of a system

Basic Principle

• COSYSMO is an open model
• It implies that everyone is free to adopt, modify, and/or extend the model
• However, it is beneficial to the industry to agree on the basic relationship

and parameters to better communicate basis of estimates

Industry Definition

Objectives

• Establish a minimum set of reference categories for each size driver (i.e.,
system requirements, system interfaces, system algorithms, and
operational scenarios), so that organizations can either directly apply
and/or expand to additional reuse categories

• Provide minimum common-denominator definitions so that organizations
can use, refine, and/or instantiate as appropriate to fit their operational
needs

Reuse Categories

1. New: Items that are completely new.
2. Adopted: Items that are incorporated unmodified.
3. Modified: Items that are reused but are tailored.
4. Deleted: Items that are removed from a system.

BAE Systems Instantiation

Objectives

• Define (unambiguous verbiage of) reuse categories to provide a clear
and consistent operational guideline for driver classification

– Establish steps rather than ramps
– Delineate such steps by something that is common to all programs

• Define such reuse categories by instantiating and refining the industry
definitions so as to avoid any potential conflicts and inconsistencies

• Provide these reuse categories as a reference to facilitate estimation of
size drivers and to enable, if deemed necessary, customer definition of
additional reuse levels

Strategy

• Define the reuse categories by systems engineering process and
activities

– Common to all projects/programs
• Provide a two orthogonal dimensions of classification framework to

enable finer grain estimation of the size drivers:
– Process: SE activities
– Level of Difficulty: easy, nominal, difficult

Approach

• Three-Step Approach:
– Step 1: Define the discriminating, lifecycle systems engineering activities for

reuse. Correlate these activities with EIA-632 defined tasks to ensure that
there is no obvious gaps.

– Step 2: Provide the definition for a set of reference reuse categories based
on the lifecycle SE activities by cross-referencing SE tasks for reuse, via
workshops

– Step 3: Derive the weights for define reuse categories by evaluating %
systems engineering effort in terms of EIA-632 process groups and ISO-
15288 life cycle, via workshops

SE Activities for Reuse Definition

1. Technical Management
2. Requirement Definition
3. Design Analysis

4. Architecture & Implementation
Changes

5. Interface Changes (Tailoring)
6. Verification & Validation

Reuse Categories

1. New: Items that are completely new
– Caveat: includes those that are inherited but require architecture or

implementation changes
2. Managed: Items that are incorporated and require no added SE effort

other than technical management
3. Adopted: Items that are incorporated unmodified but require

verification and validation
4. Modified: Items that are incorporated but require tailoring or interface

changes, and verification and validation
5. Deleted: Items that are removed from a legacy system, which require

design analysis, tailoring or interface changes, and verification and
validation

Classification Helper

• Categorization Wizard:

Terminology: Adopted vs. Reused

• We use the category name "adopted“, not "reused"
• The reason is that we do not want to use the same word representing

two different things in the same context, as it is proven to be prone to
errors in practice

• All the above defined categories are for reuse and it is confusing to use
the same word again to name one of the categories

Where:
PMNS = effort in Person Hours/Months (Nominal Schedule)
A = calibration constant derived from historical project data
k = {REQ, IF, ALG, SCN}
r = {New, Managed, Adopted, Modified, Deleted}
wr = weight for defined levels of size driver reuse
wx = weight for “easy”, “nominal”, or “difficult” size driver
Фx = quantity of “k” size driver
E = represents diseconomy of scale
CEM = composite effort multiplier

Extended COSYSMO Form

CEMwwwwAPM
E

k
kdkdknknkeke

r
rNS ⋅⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
Φ+Φ+Φ⋅= ∑ ∑)(,,,,,,

Driver Classification Guideline

Difficult

Nominal

Easy

DeletedModifiedAdoptedManagedNew

Second Pass

Order of Classification

• Apply reuse categories in terms of process and classify the levels
of difficulty in term required effort (within each reuse category)

First Pass

Reuse Are Defined In Terms of Process and Levels of Difficulty Are
Defined In Terms of Effort

Reuse Are Defined In Terms of Process and Levels of Difficulty Are
Defined In Terms of Effort

Example Data Collection Format for Reuse

Driver Weight Definition

Reuse Weights Derived Based on the Definition
Num. Requirements

New Managed Adopted Modified Deleted
100.00% 15.36% 43.37% 64.65% 50.70%

Easy 0.5 0.0768 0.21685 0.32325 0.2535
Nominal 1 0.1536 0.4337 0.6465 0.507
Difficult 5 0.768 2.1685 3.2325 2.535

Num. Interfaces
New Managed Adopted Modified Deleted

100.00% 15.36% 43.37% 64.65% 50.70%
Easy 1.1 0.16896 0.47707 0.71115 0.5577
Nominal 2.8 0.43008 1.21436 1.8102 1.4196
Difficult 6.3 0.96768 2.73231 4.07295 3.1941

Num. Algorithms
New Managed Adopted Modified Deleted

100.00% 15.36% 43.37% 64.65% 50.70%
Easy 2.2 0.33792 0.95414 1.4223 1.1154
Nominal 4.1 0.62976 1.77817 2.65065 2.0787
Difficult 11.5 1.7664 4.98755 7.43475 5.8305

Num. Scenarios
New Managed Adopted Modified Deleted

100.00% 15.36% 43.37% 64.65% 50.70%
Easy 6.2 0.95232 2.68894 4.0083 3.1434
Nominal 14.4 2.21184 6.24528 9.3096 7.3008
Difficult 30 4.608 13.011 19.395 15.21

Let’s See What Data Tells Us

Historical Program Data Points for All Platforms
(SE Actuals vs. System Size)

Red data points
were collected

based on the reuse
definition and

show good
correlation. Blue

data points did not.

Historical Program Data Points for Similar Platforms
(SE Actuals vs. System Size)

Calibration
PREDs for the
red data points

are between 60’s
and high 80’s

Historical Program Data Points for All Platforms
(Total Eng. Actuals vs. System Size)

Red data points
also show good

correlation
between system

size and total
engineering effort

Modification of Driver Definitions

Why Modification?

• The size driver definitions as in Academic COSYSMO v1.0 are
contradictory to the reuse definitions

• Example: algorithm
– “This driver represents the number of newly defined or significantly altered

functions…”
• Modifications are necessary in order to establish reuse

This driver represents the number of requirements for the system-of-interest at the
system level or the level of “sell-off” to customer, which may include derived
requirements at the same Level. The quantity of requirements includes those
related to the effort involved in system engineering the system interfaces, system
specific algorithms, and operational scenarios. Requirements may be functional,
performance, feature, or service-oriented in nature depending on the methodology
used for specification. They may also be defined by the customer or contractor.
Each requirement must have systems engineering effort associated with it such as
V&V, functional decomposition, functional allocation, etc. System requirements
can typically be quantified by counting the number of applicable “shalls” in the
system or marketing specification.

- Complex to implement or engineer- Moderately difficult to implement - Simple to implement

- High degree of requirements overlap- Some overlap- Little requirements overlap

- Hard to trace to source- Can be traced to source with some effort- Traceable to source

DifficultNominalEasy

Number of System Requirements

This driver represents the number of shared physical and logical boundaries
between system components or functions (internal interfaces) and those external to
the system (external interfaces). These interfaces typically can be quantified by
counting the number of unique external and internal system interfaces among
ISO/IEC 15288-defined system elements at the system level for the system-of-
interest.

- Complex protocol(s)- Moderate complexity- Simple

- Poorly behaved- Predictable behavior- Well behaved

- Low consensus- Moderate consensus- Strong consensus

- Highly coupled- Loosely coupled- Uncoupled

DifficultNominalEasy

Number of System Interfaces

This driver represents the number of mathematical algorithms to be derived in
order to achieve the system functional and performance requirements. As an
example, this could include a complex aircraft tracking algorithm like a Kalman
Filter being derived using existing experience as the basis for the all aspect search
function. Another example could be a discrimination algorithm being derived to
identify friend or foe function in space-based applications. The number can be
quantified by counting the number of unique algorithms needed to realize the
requirements specified in the system specification or mode description document.

- Simulation and modeling involved- Some modeling involved- Adaptation of library-based solution

- Dynamic, with timing and uncertainty
issues

- Timing a constraint- Timing not an issue

- Noisy, ill-conditioned data- Relational data- Simple data

- Recursive in structure
with distributed control

- Nested structure with decision logic- Straightforward structure

- Complex constrained optimization;
pattern recognition

- Straight forward calculus-Algebraic

DifficultNominalEasy

Number of System-Specific Algorithms

This driver represents the number of operational scenarios that a system must
satisfy in order to accomplish its intended mission. An operational scenario must be
end-to-end and triggered by an operational event. Such scenarios include both the
nominal stimulus-response thread plus all of the off-nominal threads resulting from
bad or missing data, unavailable processes, or other exceptional conditions. The
number of scenarios can typically be quantified by counting the number of use
cases or operational modes captured in the user manual, including off-nominal
extensions, developed as part of the operational architecture.

- Many or very complex off-nominal
threads

- Moderate number or complexity of off-
nominal threads

- Few, simple off-nominal threads

- Tight timelines through scenario
network

- Timelines a constraint- Timelines not an issue

- Tightly coupled or many
dependencies/conflicting requirements

- Moderately coupled- Loosely coupled

- Ill defined- Loosely defined- Well defined

DifficultNominalEasy

Number of Operational Scenarios

Gan Wang
gan.wang@baesystems.com

703-668-4259

Contact

Original Academic COSYSMO
Driver Definitions

This driver represents the number of requirements for the system-of-interest at a
specific level of design. The quantity of requirements includes those related to the
effort involved in system engineering the system interfaces, system specific
algorithms, and operational scenarios. Requirements may be functional,
performance, feature, or service-oriented in nature depending on the methodology
used for specification. They may also be defined by the customer or contractor.
Each requirement may have effort associated with is such as V&V, functional
decomposition, functional allocation, etc. System requirements can typically be
quantified by counting the number of applicable shalls/wills/shoulds/mays in the
system or marketing specification. Note: some work is involved in decomposing
requirements so that they may be counted at the appropriate system-of-interest.

Number of System Requirements

- Complex to implement or engineer- Familiar- Simple to implement

- High degree of requirements overlap- Some overlap- Little requirements overlap

- Hard to trace to source- Can be traced to source with some effort- Traceable to source

DifficultNominalEasy

This driver represents the number of shared physical and logical boundaries
between system components or functions (internal interfaces) and those external to
the system (external interfaces). These interfaces typically can be quantified by
counting the number of external and internal system interfaces among
ISO/IEC 15288-defined system elements.

- Complex protocol(s)- Moderate complexity- Simple

- Poorly behaved- Predictable behavior- Well behaved

- Low consensus- Moderate consensus- Strong consensus

- Highly coupled- Loosely coupled- Uncoupled

DifficultNominalEasy

Number of System Interfaces

This driver represents the number of newly defined or significantly altered
functions that require unique mathematical algorithms to be derived in order to
achieve the system performance requirements. As an example, this could include
a complex aircraft tracking algorithm like a Kalman Filter being derived using
existing experience as the basis for the all aspect search function. Another
example could be a brand new discrimination algorithm being derived to identify
friend or foe function in space-based applications. The number can be quantified
by counting the number of unique algorithms needed to realize the requirements
specified in the system specification or mode description document.

- Simulation and modeling involved- Some modeling involved- Adaptation of library-based solution

- Dynamic, with timing and uncertainty
issues

- Timing a constraint- Timing not an issue

- Noisy, ill-conditioned data- Relational data- Simple data

- Recursive in structure
with distributed control

- Nested structure with decision logic- Straightforward structure

- Complex constrained optimization;
pattern recognition

- Straight forward calculus-Algebraic

DifficultNominalEasy

Number of System-Specific Algorithms

This driver represents the number of operational scenarios that a system must
satisfy. Such scenarios include both the nominal stimulus-response thread plus all
of the off-nominal threads resulting from bad or missing data, unavailable
processes, network connections, or other exception-handling cases. The number
of scenarios can typically be quantified by counting the number of system test
thread packages or unique end-to-end tests used to validate the system
functionality and performance or by counting the number of use cases, including
off-nominal extensions, developed as part of the operational architecture.

- Many or very complex off-nominal
threads

- Moderate number or complexity of off-
nominal threads

- Few, simple off-nominal threads

- Tight timelines through scenario
network

- Timelines a constraint- Timelines not an issue

- Tightly coupled or many
dependencies/conflicting requirements

- Moderately coupled- Loosely coupled

- Ill defined- Loosely defined- Well defined

DifficultNominalEasy

Number of Operational Scenarios

