

Title

Jim McCurley, July, 2008

Lean focuses on the team and requires active participation.

Measurements focused on reduction of lead times/cycle times to improve throughput (unit of size/time period).

Productivity (unit of size/effort) improved by reduction of rework.

Typical Measures at the team level include:

- •Cycle time
- •Size or unit-cost measure
- •Throughput (size/time-effort)
- •Productivity (size/effort)
- Rework

Software Engineering Institute CarnegicMellon

<section-header><section-header><section-header><text><text><section-header><text><text><text><text><page-footer>

Six Sigma is tactical, focuses on the project level, and is tied to strategic goals.

Training

- The entire organization must understand the basics of measurement, statistics and problem solving.
- Some people will be required to be expert in statistical methods.

Dedicated Resources

- Six-Sigma "Black Belts" are needed on larger projects.
- Approximately 1% of staff should be qualified as Black Belts.

Project Selection

- A steering committee allocates resources for projects.
- Project selection should be tied to organization's strategic goals.

Jim McCurley, July, 2008

Software Engineering Institute Carnegie Mellon

DEFINE												
Useful method: SIPOC												
Suppliers	Inputs (and Resources)		Process	Output	Customer							
Corporate Support Group	Transaction Data; Analysts		Short Term Analysis	Monthly Forecasts	Financial Services Client							
We often re	everse it to be	come COPIS										
Customer	Output	Process	Inputs (and	Resources)	Suppliers							
Financial Services Client	Monthly Forecasts	Short Term Analysis	Transaction Data; Analysts		Corporate Support Group							
Software Engineering Institute Carnegie Mellon Jim McCurley, July, 2008 • 2008 Carnegie Mellon University 12												

					1
VEFINE		0	Output Exit Criteria		
		Measure	Target	Baseline	
C ustomer Financial	O utput Monthly Forecast	On Time Accuracy	Before 5 th of month <1.1% error rate	20% late (1 – 7 days) 0.5% error	
		1			
How does want to mea	/ the custon asure outpu	ner nt?			
	re Engineerir	ng Institute	Carnegie Mell	ON Jim McCurley, J © 2008 Carnegie Mel	luly, 2008 Ilon University

Process	Inputs	Inputs			
Short Term Analysis	Transaction Data Analysts	Financia	Financial Institutions,		
		Entry / Inputs			
	Measure	Target	Baseline		
	Completeness Accuracy Availability	100% ready; <0.1% error; 5 analysts FT for 3 days	95% ready; 1% error rate		
ow do we wai	nt the input to be n	neasured and v	verified?		

Jim McCurley, July, 2008

Tools for Summarizing & Baselining

The following are fundamental tools for establishing visual baselines of processes and performance.

The basic tools are:

- histograms
- scatter plots
- run charts
- · pareto charts
- · Box plots
- · SPC charts

The list varies depending on the source.

Alternatives include the following:

- · statistical process control charts
- · descriptive statistics (mean, median, standard deviation, etc.)
- · check sheets

Software Engineering Institute Carnegic Mellon

Analyze Guidance Questions • What do the data look like? • What is driving the variation? · Are there any hypotheses · What is the new baseline? that need to be tested? Analyze · What are associated risks and · What causal factors are assumptions associated with driving or limiting the Explore revised data set and baseline? capability of this process? data ODTEC · Should the improvement goal be · What process map updates updated? are needed? Characterize process & · Are there any immediate Is additional data exploration, data decomposition, and/or problem issues to address? Any process decomposition needed? urgent and obvious needs for problem containment? Is additional data needed? Update Evaluate improvement Can I take action? Are there data quality project evident improvements and scope & corrections to make? Summarize scale Have I updated the project & baseline tracking and communication data mechanisms? Jim McCurley, July, 2008 Software Engineering Institute **Carnegie** Mellon © 2008 Carnegie Mellon

Jim McCurley, July, 2008

Conclusion

"The SEI's CMMI and LSS have independently changed the way organizations think about their processes by addressing systemic problems in a constructive manner. These approaches are complementary. They both apply to the acquisition and development of complex systems."

Dr. Kenneth D. Shere, The Aerospace Corporation

Software Engineering Institute Carnegic Mellon

Title Date © 2006 by Carnegie Mellon University