
�	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

point

Continued on page XX

Applying SPC
to Software Development:
Where and Why
Ed Weller and David Card

Statistical Process
Control focuses on
key subprocesses in
the overall software

development process.
Under the right

conditions, SPC is
another useful tool

in our toolkit.

T
he question of whether Statistical Process
Control (SPC) applies to software engi-
neering processes is moot. Developers
have successfully applied SPC to many
software projects. Better questions are,
where and why to apply it?

SPC attempts to make processes predictable
or stable. “When will you be done? What will
it cost? How good will it be?” We’ve all heard
these questions at one time or another on proj-
ects we’ve worked on or led. As we become
more proficient in project management and
measurement, our answers to these questions
become more accurate. Statistical analysis helps
to refine our estimates to narrower ranges with
a higher, and known, degree of confidence.

SPC focuses on controlling key subprocesses
of the overall process. To be effective, SPC needs
three attributes: sufficient observations, a con-
trollable process, and a performance objective
relevant to business.

SPC guru Don Wheeler suggested that, for
reasonably accurate SPC control charts, you
need 15 or more observations, which aren’t
necessarily the same as plotted points on the
control chart (“Good Limits from Bad Data,”
Quality Digest, Apr. 1997, p. 53). However, he
also stated that, if you’re careful, you can make
some reasonably good process-stability evalu-
ations with fewer observations. This indicates
that you can apply SPC only where a subprocess
has multiple executions.

The subprocess must be amenable to con-
trol—that is, it must be well-defined and of

relatively short duration. We must have a mech-
anism for acting on it or adjusting its perfor-
mance. If a process result isn’t where we need
it to be, we must have an associated step or ac-
tivity that we can change to bring the process
back into range. If defect detection is low in in-
spections and is related to the preparation rate,
what planning process can we change to affect
the outcome? To apply SPC properly to soft-
ware processes, we need to decompose the pro-
cess and clearly understand how the subprocess
steps affect process performance.

The most frequently reported software de-
velopment application of SPC is to inspection
subprocesses—for example, using preparation
rate, defect density, and inspection-meeting
rate. Most of these reports talk about control-
ling the inspection process and identifying ways
to improve defect detection. An unfortunately
large number of them don’t address subgroup-
ing into homogeneous data sets, which often
means control limits are so wide as to be use-
less for process control or evaluation. Organi-
zations that segregate data into groups with
like properties see a more useful set of control
charts, typically with narrower control limits.
For example, new code might be more struc-
tured and easier to read, and with fewer defects
than modifications to legacy code. Separating
the new code from the old might yield different
means and narrower control limits than analyz-
ing them as a single group. A few reports show

0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 May/June 2008 I E E E S o f t w a r e � �

Continued on page XX

Software Data Violate
SPC’s Underlying
Assumptions
Bob Raczynski and Bill Curtis

Software tasks
are an intermingled
mix of skill
levels, component
complexities,
and project
conditions that
severely diminish
the power of SPC
techniques such
as control charts.

C
ontrol charts, the primary tool used in
Statistical Process Control, have pro-
foundly influenced manufacturing,
but are they appropriate for software
processes? We believe the assumptions
underlying control charts are so heavily

violated in software data that their value in un-
derstanding and managing variation is severely
diminished.

Consider the order-of-magnitude ranges
among data points falling within the three-
sigma limits for defect densities reported by
Alice Leslie Jacob and S.K. Pillai (“Statistical
Process Control to Improve Coding and Code
Review,” IEEE Software, May/June 2003, pp.
50–55). These control charts are typical of those
seen in many high-maturity organizations.
Would most managers consider a process with
order-of-magnitude variation to be predictable
or under control? On the basis of his work at
IBM Rochester, Stephen Kan stated, “Many as-
sumptions that underlie control charts are not
being met in software data. Perhaps the most
critical one is that data variation is from homo-
geneous sources. … The control limits in soft-
ware applications are often too wide to be use-
ful” (Metrics and Models in Software Quality
Engineering, Addison-Wesley, 1995).

What are homogenous sources of variation?
Walter Shewhart’s original formulation sep-

arates the causes of performance variation into
common or chance causes and assignable causes
(Economic Control of Quality of Manufac-
tured Product, Van Nostrand, 1931). A process

affected only by chance causes of variation (ho-
mogenous sources) is said to be operating within
a common-cause system; because the variation
is random, you can’t identify its causes. An as-
signable cause creates performance variation
that isn’t random and causes detectable changes
in a process’s mean or variance.

A single person repeatedly producing com-
ponents of similar difficulty under similar cir-
cumstances approximates a common-cause
system. Control charts let us characterize the
performance of this process and predict within
limits how the person will perform in the future
(Shewhart’s original objective). If the person is
assigned components of widely varying diffi-
culty, a source of variation is injected into the
process that will increase the person’s perfor-
mance variation, widen the control limits, and
introduce greater error into our predictions.
One way to solve this problem is to disaggregate
the data onto different control charts for differ-
ent levels of component difficulty.

Now, if we assign the components we’re
building to several different people who vary
widely in skill, the variation and resulting con-
trol limits will be even wider because it inter-
mingles common-cause systems. The error in-
troduced into our predictions will likewise be
far greater. If we disaggregate these data, we
end up with too many control charts, most of
which have too few data points to be useful. If
we don’t disaggregate the data, the control lim-

counterpoint

�	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

point continued from page XX

how the results of inspection-data statisti-
cal analysis can predict defect-removal rates
and residual defects entering test. These re-
ports demonstrate the most powerful SPC
applications to software.

A stable and controlled inspection pro-
cess lets you predict the defect-removal rate.
When you couple it with a full life-cycle
defect history, you can predict the defects
injected, removed by inspection, and re-
maining upon entering test. You can then
use test-activity defect-removal rates, which
might or might not be statistically derived,
to predict post-ship defect rates. This is an
important quality attribute for both your
customers and your own maintenance-ef-
fort planning. While peer reviews often be-
come the focus of SPC applications, other
appropriate subprocesses include fixing a

problem, processing a requirements change,
and coding a software unit.

Of course, as Niels Bohr said, “Predic-
tion is very difficult, especially about the
future.” An inescapable factor of predic-
tion is that you must know the character-
istics of the project team members and the
product. The variations they introduce can
make both control and prediction hazard-
ous. Sometimes these factors make statisti-
cal methods chancy at best and misleading
at worst. However, the bottom line is that,
under the right conditions, SPC is another
useful tool in our toolkit.

It’s sometimes asserted that you can
achieve SPC’s goal through more complex
techniques such as regression and variance
analysis. These techniques typically make
two key assumptions: that the data is nor-

mally distributed and that variances are
relatively constant (that is, the variances in
different samples are the same). Unfortu-
nately, analysts often don’t check these as-
sumptions. A good SPC implementation
explicitly addresses these two concerns. Of
course, that means following the SPC pro-
cess, not just jumping into control charts.
Many SPC failures in software are due to
naïve implementations, rather than weak-
nesses in the approach itself.

Ed Weller is the founder and president of Integrated
Productivity Solutions, LLC. Contact him at efweller@aol.com.

David Card is managing director of Det Norske Veritas IT
Global Services USA. Contact him at david.card@dnv.com.

its become too wide to help us manage and
predict process performance. For this rea-
son, no manufacturer would mix data from
different operators on different machines
producing different parts on the same con-
trol chart. Why do we do this in software?

The interpretation of control charts rests
on the assumption that a process operates
within a single common-cause system. Un-
fortunately, most software development
control charts plot data drawn from mul-
tiple intermingled common-cause systems.
The result is many identifiable sources of
variation acting simultaneously to violate
the assumption of homogenous variation
caused by chance factors. For instance,
most peer-review control charts intermingle
sources of variation for differences among
developer skills, component complexities,
and reviewer knowledge. Rather than rep-
resenting ‘the voice of the process,’ most
software control charts represent a ca-
cophony of voices from many intermingled
processes, each affected by its own unique
sources of variation.

Software tasks are a continually chang-
ing mix of intermingled skill levels, com-
plexities, project conditions, and other
critical factors that are nearly impossible to
disaggregate. When known sources of vari-
ation are intermingled in computing con-
trol limits, the limits become so wide that
potential assignable causes go undetected,
and claims for a process’s statistical stabil-
ity have no legitimate basis. Because we
can’t disaggregate the sources of variation
in most software control charts, the statis-
tical basis for their interpretation has been
undermined. We should therefore typically
interpret them heuristically (Kan’s “pseudo-
control charts”).

Perhaps we would be better served by
emphasizing the predictability of process
outcomes over process stability. We would
use knowledge of variation caused by
sources such as developer skills and com-
ponent complexities to predict performance
with far greater precision than what’s possi-
ble from the excessively wide control limits
of most software control charts. Wouldn’t

it be more helpful to have methods that pre-
dict and evaluate what we expect from a
person of skill X working on a component
of complexity Y under condition Z?

Regression, multivariate statistics, statis-
tically based simulations, parametric mod-
els, and other techniques are designed for
characterizing performance and predicting
results when faced with complex sources of
variation. Unfortunately, the disproportion-
ate focus on control charts for statistically
controlling software processes and quality
has diverted attention from other statistical
methods that might provide far greater in-
sight into and predictability from sources of
variation affecting the software process.

Bill Curtis is the chief executive officer of Enturity.
Contact him at curtis@acm.org.

Bob Raczynski is a staff software quality engineer
at Lockheed Martin Corp. Contact him at bobraczynski@
computer.org.

counterpointcontinued from page XX

	 May/June 2008 I E E E S o f t w a r e � �

Weller and Card Respond
Raczynski and Curtis’s primary concern with SPC and con-

trol charts seems to focus on the large variability in software
processes. This ignores some SPC principles. The magnitude
of variation isn’t a factor in determining whether a process is
stable. As long as the variability is relatively constant, even if
large, the process is in control because it’s statistically predict-
able. We can predict the average and standard deviation of
future performance, even though we might not be able to pre-
dict any individual point with great accuracy. Thus, a process
being executed by staff with varying degrees of skill could
be judged stable, even if the variability is large. However, if
we change the mix of staff—for example, to everyone having
similar skill levels—we would destabilize the process relative to
its initial performance, although it might restabilize at a condi-
tion of lesser variability. So, instability doesn’t result from wide
variation in skill levels but from changes in the skill-level mix.

Obviously, a process with a lot of variability, even if statisti-
cally stable, isn’t as desirable as one with less. However, SPC’s
long-term goals are to reduce variability and to change the
average performance level in the direction of “better.” SPC
accomplishes this by systematically analyzing the sources of
variation.

The bottom line is that real software engineering organi-
zations have produced and used control charts effectively to
make practical decisions for some time. It doesn’t make sense
to argue on theoretical grounds that SPC and/or control charts
don’t apply to software processes, given this reality. SPC and
control charts are logical first steps in learning to think statisti-
cally about process performance.

Raczinski and Curtis Respond
The only moot point is the value of drawing lines on charts

of software data. However, debating SPC’s value in construct-
ing such lines is not moot. We agree that many SPC failures in
software result from naive implementations, frequently caused
by the difficulty of disaggregating software data into separate
common-cause systems.

Weller and Card effectively describe appropriate condi-
tions for control chart use. The fundamental question is, how
much of a software project’s data can be disaggregated into
common-cause systems for which useful control charts can be
computed?

In “Statistical Process Control: Analyzing a Space Shut-
tle Onboard Software Process” (IEEE Software, July/Aug.
2000, pp. 97–106), William Florac, Anita Carleton, and Julie
Barnard disaggregated inspection data by inspection type,
module type, and module size to approximate common-cause
systems. Many segments of their 2 × 2 × 2 decomposition
had too few data points for computing useful limits. Project
developers too often find that they can construct useful control
charts for only a limited portion of their data.

A typical special cause of variation discovered with control
charts is inadequate preparation before inspections. Do we
need control charts to detect this? Shouldn’t this problem have
been discovered by a process assurance team or by the in-
spection moderator using threshold measures for preparation
time characteristic of CMMI Level 3?

If we can’t disaggregate common-cause systems, control
charts can offer little more insight than is available from lower-
maturity practices. Under such circumstances, developers can
use other statistical techniques to explore sources of variation
and to predict outcomes. We question whether SPC provides
the right statistical paradigm for these purposes.

Log on to our Web site to
	 • Search our vast archives

	 • Preview upcoming topics

	 • Browse our calls for papers

	 • Submit your article for publication

	 • Subscribe or renew

www.computer.org/software

