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Applying SPC  
to Software Development: 
Where and Why
Ed Weller and David Card

Statistical Process 
Control focuses on 
key subprocesses in 
the overall software 

development process. 
Under the right 

conditions, SPC is 
another useful tool 

in our toolkit.

T
he question of whether Statistical Process 
Control (SPC) applies to software engi-
neering processes is moot. Developers 
have successfully applied SPC to many 
software projects. Better questions are, 
where and why to apply it?

SPC attempts to make processes predictable 
or stable. “When will you be done? What will 
it cost? How good will it be?” We’ve all heard 
these questions at one time or another on proj-
ects we’ve worked on or led. As we become 
more proficient in project management and 
measurement, our answers to these questions 
become more accurate. Statistical analysis helps 
to refine our estimates to narrower ranges with 
a higher, and known, degree of confidence.

SPC focuses on controlling key subprocesses 
of the overall process. To be effective, SPC needs 
three attributes: sufficient observations, a con-
trollable process, and a performance objective 
relevant to business. 

SPC guru Don Wheeler suggested that, for 
reasonably accurate SPC control charts, you 
need 15 or more observations, which aren’t 
necessarily the same as plotted points on the 
control chart (“Good Limits from Bad Data,” 
Quality Digest, Apr. 1997, p. 53). However, he 
also stated that, if you’re careful, you can make 
some reasonably good process-stability evalu-
ations with fewer observations. This indicates 
that you can apply SPC only where a subprocess 
has multiple executions.

The subprocess must be amenable to con-
trol—that is, it must be well-defined and of 

relatively short duration. We must have a mech-
anism for acting on it or adjusting its perfor-
mance. If a process result isn’t where we need 
it to be, we must have an associated step or ac-
tivity that we can change to bring the process 
back into range. If defect detection is low in in-
spections and is related to the preparation rate, 
what planning process can we change to affect 
the outcome? To apply SPC properly to soft-
ware processes, we need to decompose the pro-
cess and clearly understand how the subprocess 
steps affect process performance.

The most frequently reported software de-
velopment application of SPC is to inspection 
subprocesses—for example, using preparation 
rate, defect density, and inspection-meeting 
rate. Most of these reports talk about control-
ling the inspection process and identifying ways 
to improve defect detection. An unfortunately 
large number of them don’t address subgroup-
ing into homogeneous data sets, which often 
means control limits are so wide as to be use-
less for process control or evaluation. Organi-
zations that segregate data into groups with 
like properties see a more useful set of control 
charts, typically with narrower control limits. 
For example, new code might be more struc-
tured and easier to read, and with fewer defects 
than modifications to legacy code. Separating 
the new code from the old might yield different 
means and narrower control limits than analyz-
ing them as a single group. A few reports show 
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Software Data Violate 
SPC’s Underlying 
Assumptions 
Bob Raczynski and Bill Curtis

Software tasks  
are an intermingled 
mix of skill 
levels, component 
complexities,  
and project 
conditions that 
severely diminish 
the power of SPC 
techniques such  
as control charts.

C
ontrol charts, the primary tool used in 
Statistical Process Control, have pro-
foundly influenced manufacturing, 
but are they appropriate for software 
processes? We believe the assumptions 
underlying control charts are so heavily 

violated in software data that their value in un-
derstanding and managing variation is severely 
diminished.

Consider the order-of-magnitude ranges 
among data points falling within the three-
sigma limits for defect densities reported by 
Alice Leslie Jacob and S.K. Pillai (“Statistical 
Process Control to Improve Coding and Code 
Review,” IEEE Software, May/June 2003, pp. 
50–55). These control charts are typical of those 
seen in many high-maturity organizations. 
Would most managers consider a process with 
order-of-magnitude variation to be predictable 
or under control? On the basis of his work at 
IBM Rochester, Stephen Kan stated, “Many as-
sumptions that underlie control charts are not 
being met in software data. Perhaps the most 
critical one is that data variation is from homo-
geneous sources. … The control limits in soft-
ware applications are often too wide to be use-
ful” (Metrics and Models in Software Quality 
Engineering, Addison-Wesley, 1995). 

What are homogenous sources of variation?
Walter Shewhart’s original formulation sep-

arates the causes of performance variation into 
common or chance causes and assignable causes 
(Economic Control of Quality of Manufac-
tured Product, Van Nostrand, 1931). A process 

affected only by chance causes of variation (ho-
mogenous sources) is said to be operating within 
a common-cause system; because the variation 
is random, you can’t identify its causes. An as-
signable cause creates performance variation 
that isn’t random and causes detectable changes 
in a process’s mean or variance.

A single person repeatedly producing com-
ponents of similar difficulty under similar cir-
cumstances approximates a common-cause 
system. Control charts let us characterize the 
performance of this process and predict within 
limits how the person will perform in the future 
(Shewhart’s original objective). If the person is 
assigned components of widely varying diffi-
culty, a source of variation is injected into the 
process that will increase the person’s perfor-
mance variation, widen the control limits, and 
introduce greater error into our predictions. 
One way to solve this problem is to disaggregate 
the data onto different control charts for differ-
ent levels of component difficulty.

Now, if we assign the components we’re 
building to several different people who vary 
widely in skill, the variation and resulting con-
trol limits will be even wider because it inter-
mingles common-cause systems. The error in-
troduced into our predictions will likewise be 
far greater. If we disaggregate these data, we 
end up with too many control charts, most of 
which have too few data points to be useful. If 
we don’t disaggregate the data, the control lim-
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how the results of inspection-data statisti-
cal analysis can predict defect-removal rates 
and residual defects entering test. These re-
ports demonstrate the most powerful SPC 
applications to software.

A stable and controlled inspection pro-
cess lets you predict the defect-removal rate. 
When you couple it with a full life-cycle 
defect history, you can predict the defects 
injected, removed by inspection, and re-
maining upon entering test. You can then 
use test-activity defect-removal rates, which 
might or might not be statistically derived, 
to predict post-ship defect rates. This is an 
important quality attribute for both your 
customers and your own maintenance-ef-
fort planning. While peer reviews often be-
come the focus of SPC applications, other 
appropriate subprocesses include fixing a 

problem, processing a requirements change, 
and coding a software unit.

Of course, as Niels Bohr said, “Predic-
tion is very difficult, especially about the 
future.” An inescapable factor of predic-
tion is that you must know the character-
istics of the project team members and the 
product. The variations they introduce can 
make both control and prediction hazard-
ous. Sometimes these factors make statisti-
cal methods chancy at best and misleading 
at worst. However, the bottom line is that, 
under the right conditions, SPC is another 
useful tool in our toolkit.

It’s sometimes asserted that you can 
achieve SPC’s goal through more complex 
techniques such as regression and variance 
analysis. These techniques typically make 
two key assumptions: that the data is nor-

mally distributed and that variances are 
relatively constant (that is, the variances in 
different samples are the same). Unfortu-
nately, analysts often don’t check these as-
sumptions. A good SPC implementation 
explicitly addresses these two concerns. Of 
course, that means following the SPC pro-
cess, not just jumping into control charts. 
Many SPC failures in software are due to 
naïve implementations, rather than weak-
nesses in the approach itself.

Ed Weller is the founder and president of Integrated 
Productivity Solutions, LLC. Contact him at efweller@aol.com.

David Card is managing director of Det Norske Veritas IT 
Global Services USA. Contact him at david.card@dnv.com.

its become too wide to help us manage and 
predict process performance. For this rea-
son, no manufacturer would mix data from 
different operators on different machines 
producing different parts on the same con-
trol chart. Why do we do this in software?

The interpretation of control charts rests 
on the assumption that a process operates 
within a single common-cause system. Un-
fortunately, most software development 
control charts plot data drawn from mul-
tiple intermingled common-cause systems. 
The result is many identifiable sources of 
variation acting simultaneously to violate 
the assumption of homogenous variation 
caused by chance factors. For instance, 
most peer-review control charts intermingle 
sources of variation for differences among 
developer skills, component complexities, 
and reviewer knowledge. Rather than rep-
resenting ‘the voice of the process,’ most 
software control charts represent a ca-
cophony of voices from many intermingled 
processes, each affected by its own unique 
sources of variation. 

Software tasks are a continually chang-
ing mix of intermingled skill levels, com-
plexities, project conditions, and other 
critical factors that are nearly impossible to 
disaggregate. When known sources of vari-
ation are intermingled in computing con-
trol limits, the limits become so wide that 
potential assignable causes go undetected, 
and claims for a process’s statistical stabil-
ity have no legitimate basis. Because we 
can’t disaggregate the sources of variation 
in most software control charts, the statis-
tical basis for their interpretation has been 
undermined. We should therefore typically 
interpret them heuristically (Kan’s “pseudo-
control charts”). 

Perhaps we would be better served by 
emphasizing the predictability of process 
outcomes over process stability. We would 
use knowledge of variation caused by 
sources such as developer skills and com-
ponent complexities to predict performance 
with far greater precision than what’s possi-
ble from the excessively wide control limits 
of most software control charts. Wouldn’t 

it be more helpful to have methods that pre-
dict and evaluate what we expect from a 
person of skill X working on a component 
of complexity Y under condition Z?

Regression, multivariate statistics, statis-
tically based simulations, parametric mod-
els, and other techniques are designed for 
characterizing performance and predicting 
results when faced with complex sources of 
variation. Unfortunately, the disproportion-
ate focus on control charts for statistically 
controlling software processes and quality 
has diverted attention from other statistical 
methods that might provide far greater in-
sight into and predictability from sources of 
variation affecting the software process.

Bill Curtis is the chief executive officer of Enturity. 
Contact him at curtis@acm.org.

Bob Raczynski is a staff software quality engineer 
at Lockheed Martin Corp. Contact him at bobraczynski@
computer.org.
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Weller and Card Respond
Raczynski and Curtis’s primary concern with SPC and con-

trol charts seems to focus on the large variability in software 
processes. This ignores some SPC principles. The magnitude 
of variation isn’t a factor in determining whether a process is 
stable. As long as the variability is relatively constant, even if 
large, the process is in control because it’s statistically predict-
able. We can predict the average and standard deviation of 
future performance, even though we might not be able to pre-
dict any individual point with great accuracy. Thus, a process 
being executed by staff with varying degrees of skill could 
be judged stable, even if the variability is large. However, if 
we change the mix of staff—for example, to everyone having 
similar skill levels—we would destabilize the process relative to 
its initial performance, although it might restabilize at a condi-
tion of lesser variability. So, instability doesn’t result from wide 
variation in skill levels but from changes in the skill-level mix.

Obviously, a process with a lot of variability, even if statisti-
cally stable, isn’t as desirable as one with less. However, SPC’s 
long-term goals are to reduce variability and to change the 
average performance level in the direction of “better.” SPC 
accomplishes this by systematically analyzing the sources of 
variation.

The bottom line is that real software engineering organi-
zations have produced and used control charts effectively to 
make practical decisions for some time. It doesn’t make sense 
to argue on theoretical grounds that SPC and/or control charts 
don’t apply to software processes, given this reality. SPC and 
control charts are logical first steps in learning to think statisti-
cally about process performance.

Raczinski and Curtis Respond
The only moot point is the value of drawing lines on charts 

of software data. However, debating SPC’s value in construct-
ing such lines is not moot. We agree that many SPC failures in 
software result from naive implementations, frequently caused 
by the difficulty of disaggregating software data into separate 
common-cause systems.

Weller and Card effectively describe appropriate condi-
tions for control chart use. The fundamental question is, how 
much of a software project’s data can be disaggregated into 
common-cause systems for which useful control charts can be 
computed?

In “Statistical Process Control: Analyzing a Space Shut-
tle Onboard Software Process” (IEEE Software, July/Aug. 
2000, pp. 97–106), William Florac, Anita Carleton, and Julie 
Barnard disaggregated inspection data by inspection type, 
module type, and module size to approximate common-cause 
systems. Many segments of their 2 × 2 × 2 decomposition 
had too few data points for computing useful limits. Project 
developers too often find that they can construct useful control 
charts for only a limited portion of their data.

A typical special cause of variation discovered with control 
charts is inadequate preparation before inspections. Do we 
need control charts to detect this? Shouldn’t this problem have 
been discovered by a process assurance team or by the in-
spection moderator using threshold measures for preparation 
time characteristic of CMMI Level 3?

If we can’t disaggregate common-cause systems, control 
charts can offer little more insight than is available from lower-
maturity practices. Under such circumstances, developers can 
use other statistical techniques to explore sources of variation 
and to predict outcomes. We question whether SPC provides 
the right statistical paradigm for these purposes.
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