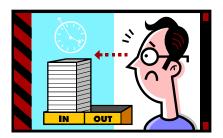


Export Control #IS-DSS-061109-154. Approved for Public Release.

Total Engineering Estimation -

Data Collection Needs Demand Data Collection Processes Alex Shernoff



Export Control #IS-DSS-061109-154 2009 © BAE Systems, Inc. All rights reserved. June 25th, 2009 PSM Users Conference

1

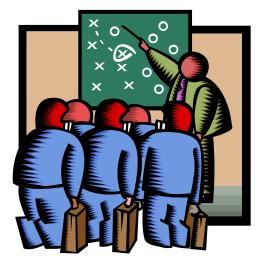
Data Collection Needs – The Problem

- Do you recognize these scenarios?
 - You receive an urgent call from Business Development. They need you to develop a Rough Order of Magnitude (ROM) estimate in 24 hours
 - You are working a proposal and are asked to develop 100 Basis of Estimates (BOEs) to put in the cost volume
 - You get a call from your Program Manager asking you to estimate a portion of an Engineering Change Request from your customer
- How do you currently solve them?
 - Contact the "expert"?
 - WAG?
 - Detailed bottoms-up estimates?
 - Parametric estimates?

Data Collection Needs – Historical Data Issues

- To solve the previous issues parametric modeling has become popular, BUT...
- Lack of useful historical data is all too common in our industry
 - No funding to do program post-mortems
 - Critical personnel are quickly moved to other programs
 - Diverse Lines of Businesses present a data collection problem
- Historical data that has been collected has many problems:
 - Inconsistent
 - Unreliable
 - Sparse
 - Gaps/Overlaps

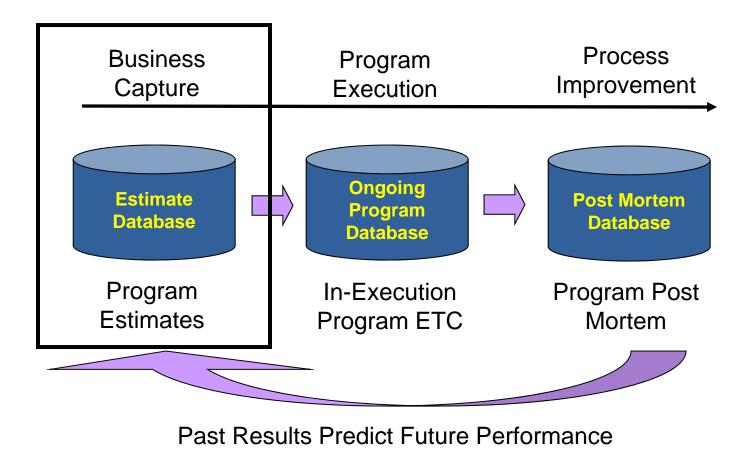
Historical data collection CANNOT be an ad-hoc process!


The Catalyst – BAE Systems SEEMaP/TEEMaP Initiatives

- EI&S Operating Group wide strategic initiatives
 - Estimating systems engineering and total engineering efforts in developing a system or executing a program that delivers a system
 - Products
 - SEEMaP[™] Systems Engineering Estimation Model and Process
 - TEEMaP[™] Total Engineering Estimation Model and Process
 - Applied to ROM, Engineering bid & proposal, Trade studies
 - Improve engineering estimation maturity, confidence, and credibility
- Data collection is the cornerstone for estimating tools
 - Parametric estimation is all about data
 - Launched activities in LoBs systematically collection
 - Collected over 50 past programs

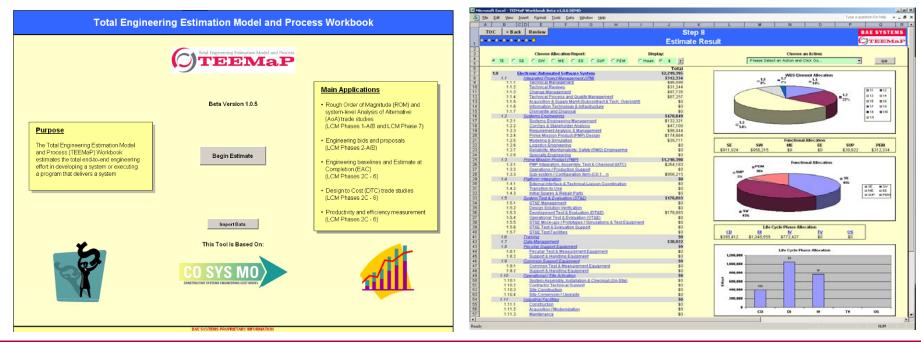
One Model – One Process – Multiple Calibrations

Multi-year Data Collection Process


- Objectives: collect historical data for
 - Supporting tool development
 - Bid & proposal estimating
 - Productivity and Efficiency (P&E) measurement (later)
- What to Collect:
 - Completed programs
 - New estimates
 - In-progress program
- Who to Collect:
 - Development team + Stakeholder group + Program personnel
- Where to Collect:
 - All major sites
- When:
 - Over 3 years and still on going, managed at the yearly basis
- How to Collect:
 - Process
 - Tools (DCT + database + Workbooks)
 - Training

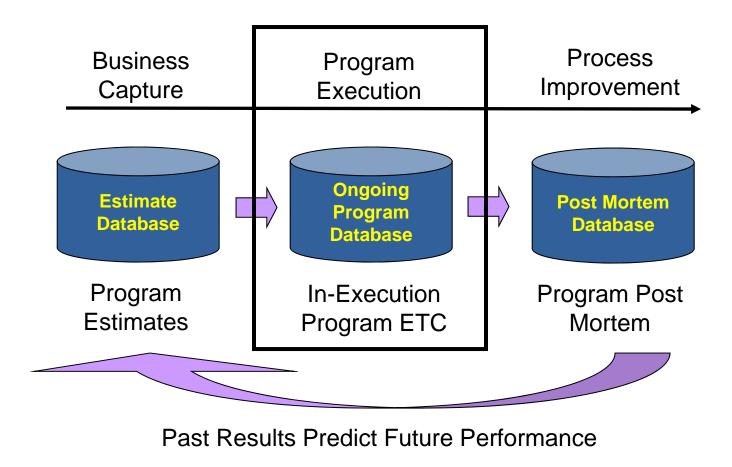
Three Stage Data Collection

New Estimate Data Collection


Collecting New Estimate Data

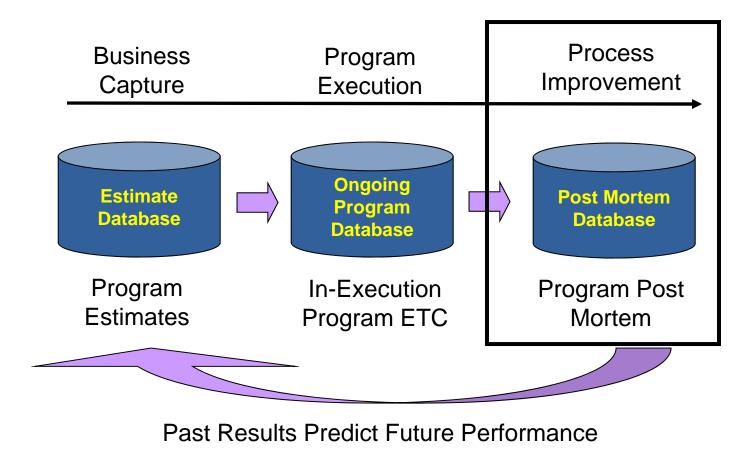
- Proposal Data Collected
 - Newly developed estimates
 - Basic Program and Estimate Information
 - TEEMaP/SEEMaP estimate results
 - Estimates based on other methods (e.g., bottom-up)
 - Questionnaire filled out by individuals developed estimates
- Data intended for
 - Basis of analogy for future Bids/Proposals estimation
 - Reference for contract negotiations
 - Validation of the estimating tool
- Tools used
 - TEEMaP & SEEMaP Workbooks
 - Central database
 - Statistical analyses

TEEMaP Workbook


TEEMaP Workbook

- Internal engineering estimation tool deployed across the organization
- Process driven follows the "Turbo Tax[®]" methodology
- Model based on extended COSYSMO
- Create estimate based on organization specific calibrations

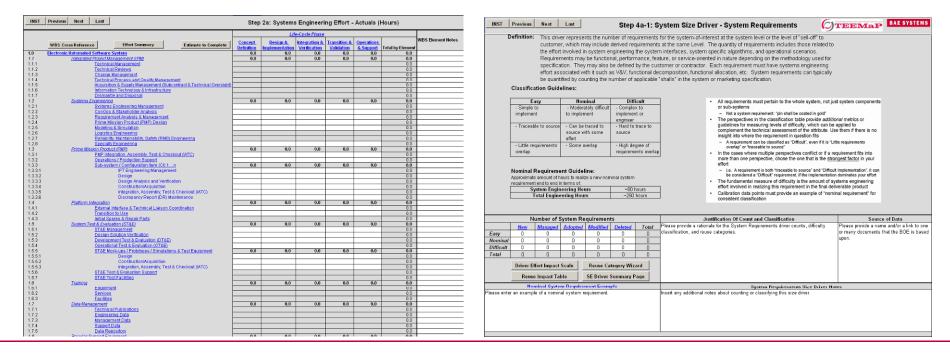
Export Control #IS-DSS-061109-154


In-Execution Program Data Collection

Collecting In-Execution Program Data

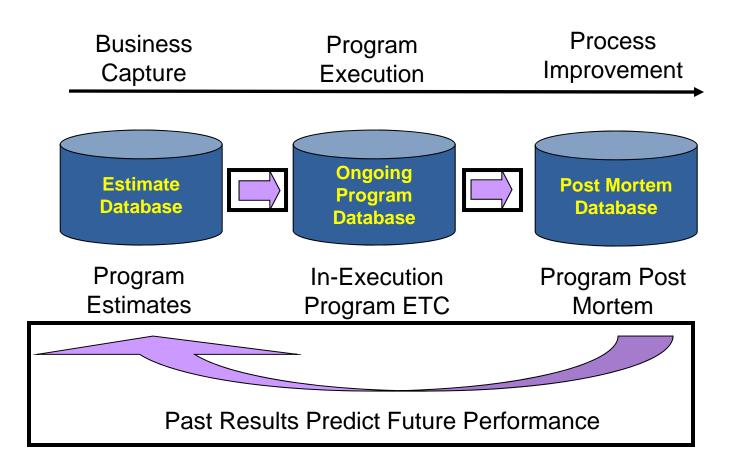
- Program data collected periodically (6-month cycles)
 - Actuals (by WBS, Life Cycle Phase, and Function)
 - Estimate to Completion (ETC) (by WBS, Life Cycle Phase, and Function)
 - Revised estimates
 - Basic Program and Estimate Information
 - TEEMaP/SEEMaP estimate results
 - Other Engineering Data (SW Rqmts, ME/EE Rqmts, eSLOC, HW SWAP, Supportability metrics)
- Data intended to
 - Monitor program Productivity & Efficiency (P&E) trends
 - Look at program progress and status
 - Assess ECPs, Requirement changes, etc
- Tools used
 - TEEMaP Data Collection Template
 - Central database
 - Statistical analyses

Post Mortem Program Data Collection

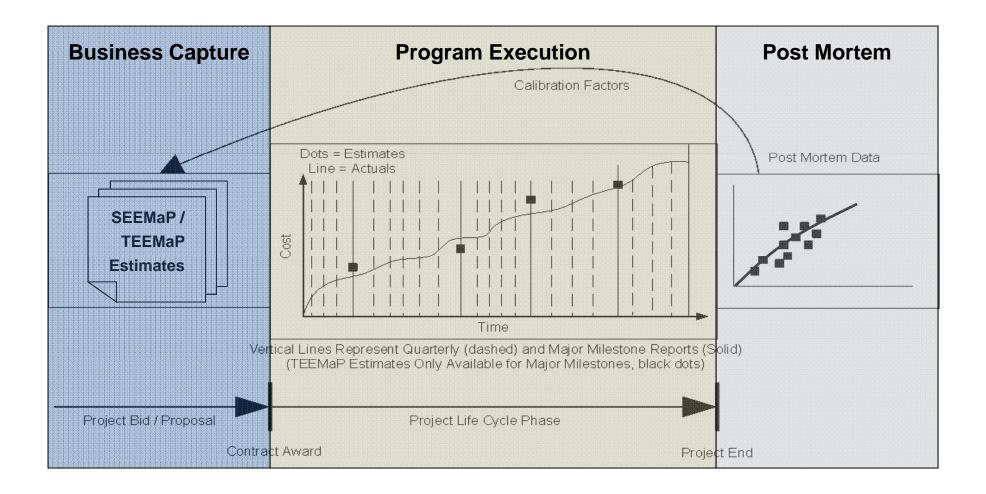


Collecting Post Mortem Program Data

- Program data at completion (or historical programs)
 - Program Information (Type, Duration, Contacts, etc.)
 - Actuals (by WBS, Life Cycle Phase, and Function)
 - COSYSMO-based Size and Cost Drivers
 - Other Engineering Data (SW Rqmts, ME/EE Rqmts, eSLOC, HW SWAP, Supportability metrics)
 - Rationales and justifications
- Data intended for
 - Calibration development
 - Program validation (if the program was previously estimated)
- Tools used
 - TEEMaP Data Collection Template
 - Central database
 - Statistical analysis tools

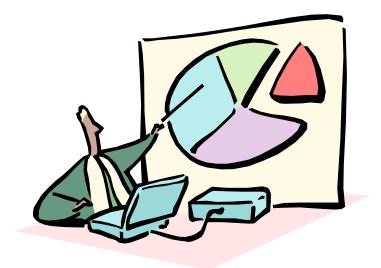

TEEMaP Data Collection Template

- Data Collection Template (DCT)
 - Actuals and ETCs
 - Standard WBS, engineering functions, life cycle phases
 - COSYSMO-based size and cost drivers
 - Functional oriented Data (SW Rqmts, ME/EE Rqmts, eSLOC, HW SWAP, Supportability metrics)
 - Rationales and justifications



Export Control #IS-DSS-061109-154

Data Relationship – Life Cycle Perspective



Data Migration in Program Life Cycle

Creating Calibrations with Historical Data

- Historical data needs to go one step further
 - Data Analysis bridges the gap between past performance and future business
 - Group "like programs" to discover productivity patterns
 - Calibrating your historical data is the key to tying the end of the data collection life cycle to the beginning of the data collection life cycle

Data Collection is a hands-on process

- 1. Identify historical programs and establish program technical and financial points of contact (POCs) and Data Collectors (DCs)
- 2. Conduct initial data collection training session (face to face preferred)
 - Learn the TEEMAP Data Collection Template
 - Learn metrics definitions
- 3. Initial data collection performed by the program POCs
 - Engineering actuals by WBS, life cycle phase, and functions
 - System drivers
 - SW & HW drivers
- 4. Interview session with TEEMaP team to review the program data
- 5. Iterate
 - Recollect questionable data
 - Additional interview sessions
- 6. Finalize the data point
 - Upload into the SQL Database
 - Move on to analysis and calibration...

Identifying Relevant Data

- Identifying candidate programs eliminates headaches upfront
 - 1. Completed Program
 - Does the program have clear start and completion, and clean funding lines?
 - There can be exceptions for strategic areas
 - 2. Relevance of Future Bids
 - Do we have the right kinds of programs to support future bids? Example: similarity of programs, age of programs, process changes, etc
 - 3. Point of Contact
 - Can we identify the individual(s) who really know the project in detail, e.g., PEM/Engineering Leads, and who we can interview to collect data?
 - 4. Supporting Data
 - Can we find the engineering documentation, e.g., Metrics, etc, from which to derive important program attributes (i.e., the size drivers: requirements, interfaces, LOC, # drawings, # circuit boards, etc.)?

Data Collection Challenges

- Time
 - Data Collection is a time consuming process
- Money
 - Data Collection takes investment, which is hard to get
- Personnel Setbacks
 - Core Team, Program Data Collector, Stakeholder
 - Personnel issues can stop data collection in its tracks!
- It's a problem solving process
 - After the first pass, data may look bad don't get discouraged
 - Requires personnel internal to program
 - Training is necessary
 - Data reviews are necessary
- Consistency, consistency, consistency!
 - Program Data Collector is set in his/her ways
 - Same definition different interpretation
 - Diverse products and product lines
 - What is "the system"?
- Management championship is key

Summary

- 3-year data collection effort at BAE Systems to support:
 - Estimation process improvement drove data collection and tool development
 - P&E measurement
- Three pillars to support large scale data collection
 - People + Process + Tools
- Data Collection is hard work!
 - Consistency is key but requires effort to achieve
 - It's a problem solving exercise
 - Defined process helps
- It is worth it!
 - Metrics are useful in more ways than one
 - Capture it while you can... If you wait until you need it it's already too late

People, Process, and Tools are the foundation of successful data collection

Questions and Contact Info

QUESTIONS?

Alex Shernoff, Systems Engineer, BAE Systems

alex.shernoff@baesystems.com

703-668-4429

Dr. Gan Wang, TEEMaP Lead, BAE Systems

gan.wang@baesystems.com

703-668-4259