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Abstract—Reuse in systems engineering is a frequent but 

poorly understood phenomenon. Nevertheless, it has a significant 
impact on estimating the appropriate amount of systems 
engineering effort with models like the Constructive Systems 
Engineering Cost Model (COSYSMO). Practical experience 
showed that the initial version of COSYSMO, a model based on a 
“build from the scratch” philosophy, needed to be refined in 
order to incorporate reuse considerations that fit today’s 
industry environment. The notion of reuse recognizes the effect 
of legacy system definition in engineering a system and 
introduces multiple reuse categories for classifying each of the 
four COSYSMO size drivers – requirements, interfaces, 
algorithms, and operational scenarios. It modifies the counting 
rules for the COSYSMO size drivers and updates the definition 
of system size in COSYSMO.  It provides an enabling framework 
for estimating a system under incremental and spiral 
development. 

In this paper, we present (1) the definition of the COSYSMO 
reuse extension and the approach employed to define this 
extension; (2) the updated COSYSMO size driver definitions that 
are consistent with the reuse model; (3) the method applied to 
defining the reuse weights used in the modified parametric 
relationship; (4) a practical implementation example that 
instantiates the reuse model by an industry organization and the 
empirical data that provided practical validation of the extended 
COSYSMO model; and (5) recommendations for organizational 
implementation and deployment of this extension. 
 

Index Terms—systems engineering, reuse, metrics, cost 
estimation  
 

I. INTRODUCTION 
LMOST all systems have a legacy. Today, more often 
than not, systems are developed based on an evolution of 

previous systems.  New releases of software are developed by 
modifying and enhancing a previous release. Similarly, new 
generations of airplanes, ships, and automobiles are developed 
by improving the functionality and performance of previous 
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models. In many situations, product lines are managed 
through incremental improvement of previous system 
definitions. In other situations, existing systems are 
modernized through technology insertions and obsolescence 
management. Although system-level examples where 
previously developed components and capabilities have been 
leveraged can generally be easily identified, the current 
literature fails to address how such instances of reuse at the 
system-level should be appropriately quantified [1]. In other 
domains, such as software, reuse is a much better documented 
concept [2]. 
 When a “new system” is developed, it commonly uses 
existing components, proven functionality, or established 
architecture. Across industry, we have witnessed ever 
increasing trends of COTS-integration in system development 
and ever diminishing endeavors of constructing something 
completely new from a “clean slate”. However, incorporating 
disparate elements together into a developing system is often 
no easy task, as the integration of legacy elements can 
negatively impact project resources, sometimes substantially 
[3]. Knowing this, addressing reuse from a systems 
perspective, particularly the impact on the systems 
engineering effort required throughout the life cycle, is critical 
to accurately estimating the development cost of a system.   

One method for estimating the amount of systems 
engineering effort required for a project is the Constructive 
Systems Engineering Cost Model (COSYSMO) [4]. 
Developed at the University of Southern California with the 
support of a consortium of academic, industry, and 
government organizations, COSYSMO is a parametric model 
for estimating the systems engineering and integration effort 
required for the conceptualization, design, test, and 
deployment of software and hardware systems and executing 
projects that develop such a system. COSYSMO is part of the 
COCOMO II suite of models and developed through a similar 
methodology. COCOMO, originally developed in 1981 and 
revised as COCOMO II in 2000, is the most widely used, 
thoroughly documented and well calibrated software cost 
model [5]. Applying a similar approach in COCOMO to the 
systems domain, COSYSMO defines a parametric relationship 
that estimates systems engineering effort under nominal 
schedule, in person months, based on four size drivers – 
system requirements, system interfaces, system algorithms, 
and operational scenarios – and adjusted by fourteen effort 
multipliers, which capture the product and project 
environment and complexity factors. COSYSMO defines a 
sizing quantity called “system size” from a weighted sum of 
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the four size drivers.  The parametric relationship is shown 
below (1): 
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Where,  

PMNS = effort in Person Months (Nominal Schedule) 

A = calibration constant derived from historical 
project data  

k = {REQ, IF, ALG, SCN} 

wx =  weight for “easy”, “nominal”, or “difficult” 
size driver 

xΦ = quantity of “k” size driver 

E   = represents (dis)economies of scale 

EM = effort multiplier for the jth cost driver.  The 
geometric product results in an overall effort 
adjustment factor to the nominal effort. 

 
Being the first of its kind, the model has, in a very short 

period of time, caught the attention of the systems engineering 
community, industry and academia alike.  It has demonstrated 
the potential to bridge a long-time gap between system 
complexity and its corresponding systems engineering effort 
estimate.  Organizations have made various attempts to pilot 
the model and apply it to practical applications [6, 7].   

Early application of COSYSMO, however, has revealed 
that the model did not recognize the concept of reuse in 
systems engineering [8, 9]. It assumes that all of its four size 
drivers – system requirements, system interfaces, system 
algorithms, and operational scenarios – are new entities when 
defining the system size. In other words, the model is based 
on a “build from scratch” philosophy and assumes all systems 
are developed from a “clean slate”.   

This differs from how systems are typically built today 
since requirements for a new system may be “adopted” from 
an existing system. Furthermore, some of the new system’s 
requirements may be “modified” from a prior system.  
Moreover, the evolution of system requirements over the 
system life cycle may result in “deleted” requirements from 
the initial configuration baseline. The same situations may 
apply to the other three size drivers – interfaces, algorithms, 
and operational scenarios. As the result, the calculated system 
size does not reflect reusing elements of the system definition 
and, consequently, can result in inaccurate estimate of systems 
engineering effort required to realize such a system. This 
problem intensifies when dealing with the incremental and 
spiral development. 

Therefore, we propose incorporating the concept of reuse 
for estimating the size of a system, in order for COSYSMO to 
more accurately estimate the systems engineering effort. 

 

II. DEVELOPMENT APPROACH 
The approach taken to represent the system size is 

analogous to that used to represent software code size in those 
frequent instances in which there are several categories of 
code, including new and different levels of reuse, as well as 
deleted [10, 11, 12]. In the case of software, the size of the 
code is often represented as “ESLOC,” or “Equivalent New 
Source Lines of Code.” ESLOC is computed as the weighted 
sum of the new, the reused, the modified, and the deleted 
code. Similarly, we define “Equivalent Requirements” or 
“eReqs” in COSYSMO as a function of the weighted sum of 
the new, reused, modified, and deleted requirements in a 
system. This reuse approach COSYSMO is motivated by the 
similar model defined by COCOMO II [5]. Therefore, 
additional consideration has been given so that the definitions 
of reuse are conceptually consistent between COSYSMO and 
COCOMO II since they belong to the same family of models. 

When defining the concept of reuse for COSYSMO, the 
following basic principles hold true. 

1. COSYSMO is an open model, developed by the 
community and for the community.  Users are free to 
change and/or extend the model. 

2. On the other hand, it is beneficial for the industry to 
agree on the basic definition, relationship and 
parameters to better communicate basis of estimates. 

COSYSMO has been developed as an open model by the 
community of academia, industry and government for the use 
of the general public. This implies that everyone is free to 
adopt, modify, and/or extend the model. In fact, it is intended 
for organizations to adapt to their own engineering processes 
and business models, and to develop local, tailored estimating 
tools. In defining reuse as another aspect of the model, it 
should not, in any way, restrict or hinder individual 
applications or adaptations of this model. In fact, it should 
help to facilitate such a local implementation. 

On the other hand, similar to other cost estimating models, 
COSYSMO provides a methodology for the industry at large 
to measure and communicate productivity and basis of 
estimate. For the industry to best communicate such a measure 
of productivity and basis of estimate, it is important that the 
same basic definitions are consistently understood and 
applied. This includes definition of terms and nomenclatures, 
the basic estimating relationship, and the guidelines for 
measurement.   

However, the above two principles could inherently be 
conflicting with each other. Free adaptation of the model 
could lead to individual inconsistent definitions and 
interpretations of the model. While over-restriction of the 
model definition could limit the application of the model by 
organizations, care must be taken to strike a fine balance to 
preserve both of the above principles, so that it does not over-
constrain its application and adaptation across the industry 
and, at the same time, preserve the integrity of the model. 

The approach taken to develop the reuse concept was to 
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summarize the leading organizational definitions and to 
aggregate them based on a “minimum common denominator” 
strategy. Several organizations including BAE Systems, 
Lockheed Martin and Raytheon have been piloting and 
implementing this reuse concept. There are some subtle 
differences in the definitions used, but the basic concept is the 
same.  For this effort, the following guidelines for the industry 
definition were defined. 

A. Establish a minimum set of reference categories for 
each size driver (i.e., system requirements, system 
interfaces, system algorithms, and operational 
scenarios), so that organizations can either directly 
apply and/or expand to additional reuse categories. 

B. Provide minimum common-denominator definitions 
so that organizations can use, refine, and/or 
instantiate as appropriate to fit their operational 
needs. 

Goal “A” indicates that we define only those reuse 
categories that all stakeholders can agree on as the common 
denominator for the community, and these categories are 
intended as the reference for an organization in its own 
implementation to either directly apply or expand to additional 
categories if it deems necessary. In other words, the intent is 
to always maintain this set of categories, but one may add 
other categories, generally as subdivisions, if appropriate. 
Goal “B” states that the definitions are intentionally structured 
with the minimum common denominator language so that 
organizations can either directly use or, if necessary, may 
refine and substantiate the definitions to fit their operational 
use.  In other words, the industry definitions are intentionally 
termed at a high level to cover wide ranges of applications. 

Several industry-level workshops have been conducted 
under the stated guidelines to achieve the community 
agreement on the pilot implementation and validation of the 
reuse model in leading organizations.  The following reuse 
extension has been defined through such as a community 
agreement. 

 

III. THE COSYSMO REUSE EXTENSION 
The COSYSMO reuse extension defines five categories for 

counting its size drivers, termed: new, modified, adopted, 
deleted, and managed. The quantities of each of the four 
COSYSMO size drivers, i.e., number of requirements, number 
of interfaces, number of algorithms, and number of 
operational scenarios, may be classified into the follow five 
categories of reuse: 

1. New: Items that are completely new. 
2. Modified: Items that are inherited, but are tailored. 
3. Adopted: Items that are incorporated unmodified.  

Also known as “black box” reuse. 
4. Managed: Items that are incorporated unmodified 

and untested. 
5. Deleted: Items that are removed from a system. 

As an example, a requirement can be new, which no 

precedence can be found for the system to be developed. New 
items are generally unprecedented and may be associated with 
a low level of familiarity. A requirement may be modified in 
the sense that a heritage element is reused, but needs a limited 
level of modification or tailoring for it to be fully incorporated 
in the new system. A requirement may also be adopted where 
the indicated functionality and performance has previously 
been developed and can therefore be incorporated without any 
changes. This is commonly referred to as “black box” reuse 
since the requirement is literally copied from a previous effort 
remaining unchanged. A requirement that is considered 
managed is incorporated typically as a turn-key component 
where there is minimal development effort, except for 
possibly engineering management, on the part of the 
contractor since a subcontractor may be responsible for its 
delivery. Deleted requirements are those that are already in the 
legacy system or architecture design, but need to be removed 
from the current system definition based on customer need or 
contractual commitments. Consequently, each of these five 
types of reuse requires different degrees of systems 
engineering effort. 

It is important to note that the modified category spans a 
wide range of possible effort. Modification may entail a 
simple change in an interface connection to a complete 
revamp of the entire system architecture. The intent of the 
modified category is to capture those elements that involve 
tailoring changes only, with no changes to the internal 
architecture. Therefore, those items that are inherited but 
require a significant amount of architecture or implementation 
changes should be counted as new. 

For each size driver, three complexity levels are defined in 
COSYSMO: easy, nominal, and difficult. These levels are 
invariant in the context of reuse. Depending upon the point of 
view, within each category of reuse, there are three levels of 
complexity. Alternatively, within each level of difficulty, 
there can be five categories of reuse.  Conceptually, the two 
notions – categories of reuse and levels of difficulty – form a 
two dimensional classification framework for size drivers that 
provide adequate level of granularity in determining system 
size. Operationally, when classifying drivers in terms of reuse, 
there are two alternative sequences, purely depending upon 
user preferences. When counting requirements, for example, 
they can first be classified into the five reuse categories. Next, 
within each reuse category, they can be further divided into 
three levels of complexity.  This additional dimension yields a 
revised COSYSMO parametric relationship that incorporates 
the concept of reuse (2): 
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Where: 

PMNS = effort in Person Months (Nominal Schedule) 
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A = calibration constant derived from historical 
project data  

k = {REQ, IF, ALG, SCN} 

r = {New, Modified, Adopted, Deleted, Managed} 

wr  = weight for defined degrees of reuse 

wx =  weight for “easy”, “nominal”, or “difficult” 
size driver 

xΦ = quantity of “k” size driver 

E   = represents diseconomies of scale 

EM = effort multiplier for the jth cost driver.  The 
geometric product results in an overall effort 
adjustment factor to the nominal effort. 

 
In contrast to the COSYSMO equation shown earlier (1), 

the revised relationship (2) introduces reuse as an additional 
dimension for each of the size drivers. 
 

IV. MODIFIED SIZE DRIVER DEFINITIONS 
With the concept of reuse incorporated into its parametric 

relationship, the COSYSMO size driver definitions require 
their amendments. As an example, the original definition for 
algorithm contains the verbiage: “This driver represents the 
number of newly defined or significantly altered functions…”, 
which directly conflicts with the concept of reuse such as 
“adopted”. The modifications to the definitions are 
underlined. 

These proposed changes in size driver definitions were 
obtained with industry feedback at the COSYSMO working 
group meeting at the Practical Software & Systems 
Measurement User Group Meeting in Denver in July 2007. As 
the result, the amended COSYSMO size driver definitions, 
consistent with the reuse extension, are given as below. 

 

A. Number of Systems Requirements 
This driver represents the number of new, modified, 

adopted, managed, and deleted requirements for the system-
of-interest at the system level or the level of “sell-off” to 
customer, which may include derived requirements at the 
same level. The quantity of requirements includes those 
related to the effort involved in system engineering the system 
interfaces, system specific algorithms, and operational 
scenarios. Requirements may be functional, performance, 
feature, or service-oriented in nature depending on the 
methodology used for specification.  They may also be 
defined by the customer or contractor.  Each requirement must 
have systems engineering effort associated with it such as 
verification and validation (V&V), functional decomposition, 
functional allocation, etc.  System requirements can typically 
be quantified by counting the number of applicable “shalls” in 
the system or marketing specification.   

 
Easy Nominal Difficult 

- Simple to implement - Moderately difficult to 
implement  

- Complex to implement 
or engineer 

- Traceable to source - Can be traced to source 
with some effort 

- Hard to trace to source 

- Little requirements 
overlap 

- Some overlap - High degree of 
requirements overlap 

 

B. Number of System Interfaces 
This driver represents the number of new, modified, 

adopted, managed, and deleted shared physical and logical 
boundaries between system components or functions (internal 
interfaces) and those external to the system (external 
interfaces). These interfaces typically can be quantified by 
counting the number of unique external and internal system 
interfaces among ISO/IEC 15288-defined [13] system 
elements at the system level for the system-of-interest. 

 
Easy Nominal Difficult 

- Simple  - Moderate complexity - Complex protocol(s) 

- Uncoupled - Loosely coupled - Highly coupled 

- Strong consensus - Moderate consensus - Low consensus 

- Well behaved - Predictable behavior - Poorly behaved 

C. Number of System-Specific Algorithms 
This driver represents the number of new, modified, 

adopted, managed, and deleted mathematical algorithms to be 
derived in order to achieve the system functional and 
performance requirements. As an example, this could include 
a complex aircraft tracking algorithm like a Kalman Filter 
being derived using existing experience as the basis for the all 
aspect search function. Another example could be a 
discrimination algorithm being derived to identify friend or 
foe function in space-based applications. The number can be 
quantified by counting the number of unique algorithms 
needed to realize the requirements specified in the system 
specification or mode description document. 

 

Easy Nominal Difficult 

-Algebraic - Straight forward 
calculus 

- Complex constrained 
optimization; pattern 
recognition 

-- Straightforward 
structure 

- Nested structure with 
decision logic 

- Recursive in structure 
with distributed control 

- Simple data - Relational data - Noisy, ill-conditioned 
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data 

- Timing not an issue - Timing a constraint - Dynamic, with timing 
and uncertainty issues 

- Adaptation of library-
based solution 

- Some modeling 
involved 

- Simulation and 
modeling involved 

 

D. Number of Operational Scenarios 
This driver represents the number of new, modified, 

adopted, managed, and deleted operational scenarios that a 
system must satisfy in order to accomplish its intended 
mission. An operational scenario must be end-to-end and 
triggered by an operational event. Such scenarios include both 
the nominal stimulus-response thread plus all of the off-
nominal threads resulting from bad or missing data, 
unavailable processes, or other exceptional conditions. The 
number of scenarios can typically be quantified by counting 
the number of use cases or operational modes captured in the 
user manual, including off-nominal extensions, developed as 
part of the operational architecture. 

 
Easy Nominal Difficult 

- Well defined - Loosely defined - Ill defined 

- Loosely coupled - Moderately coupled - Tightly coupled or 
many 
dependencies/conflicting 
requirements 

- Timelines not an issue - Timelines a constraint - Tight timelines through 
scenario network 

- Few, simple off-
nominal threads 

- Moderate number or 
complexity of off-
nominal threads 

- Many or very complex 
off-nominal threads 

 
 

V. WEIGHT DEFINITION FOR REUSE CATEGORIES 
We present in this section the approach used to define the 

weights for the reuse categories in the COSYSMO equation 
(2). It is important to note that the approach outlined below is 
designed to capture the statistical behavior of a group of the 
projects, rather than individual behavior of a particular 
project. In fact, on an individual basis, a project may exhibit a 
vastly different pattern of labor distribution relatively to reuse. 
An adopted or modified element could prove to be more costly 
than a brand-new element in terms of life cycle systems 
engineering effort. 

The approach taken is bottoms-up activity-based, by which 
we define the reuse weights by evaluating life cycle systems 
engineering activities. In particular, we examined the 33 
systems engineering activities in five activity groups defined 
by the ANSI/EIA 632 standard [14] relative to four life cycle 
phases derived from (but not exactly the same as) the stages 
defined in ISO/IEC 15288, Systems Life Cycle Processes.  

The result of this analysis is presented in the matrix in 
Figure 1. Along the x-axis, the four life cycle phases are 
repeated for each defined reuse category, namely, 
Conceptualize, Develop, Operational Test & Evaluation, and 
Transition to Operation.   

Along the y-axis are the 33 systems engineering activities in 
the five activity groups. For each defined reuse category, we 
identify the applicable activities by life cycle, which derive 
the sparsely populated matrix in Figure 1. The analysis 
involves the determination of applicability of an activity 
across the life cycle for a particular reuse category. As an 
example, realizing a new requirement into a product would in 
general incur all of the activities as specified by EIA-632. A 
reused requirement, on the other hand, would likely exclude 
some of the activities. The underlying assumption is that a 
reused element generally saves systems engineering effort 
compared to a new element. This matrix allows qualitative 
distinction between relative scales for reused and new. 
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Fig. 1.  Systems engineering activity vs. life cycle phase mapping by reuse categories 

 
The next step is to turn the qualitative relationship to a 

quantitative one. This is done with an effort distribution 
table derived from an industry wide-band Delphi survey 
[15], as shown in Figure 2. Similarly, the four life cycle 
phases from ISO/IEC 15288 and the five systems 
engineering activities from ANSI/EIA 632 are presented. 
The value in each cell of the matrix represents the 
percentage of the total effort applied to a particular activity 
in a particular life cycle phase. The total sums to 100%, 
which corresponds to the life cycle effort of developing a 
new system or system element, from concept to delivery. 

Each systems engineering process yields a unique effort 
profile. For example, the Acquisition and Supply activity 
typically represents 7% of the total systems engineering 
effort across four phases of the life cycle. By combining the 
results in Fig 1 with the data in Fig 2, an approximation of 
the weight of a particular activity can be prorated for 
different reuse categories. For example, in the adopted 

category, the effort for System Design process is not 
significant in the Development phase. Hence, we will 
assign the value of 0% or remove the original effort value 
(12%) for that cell. On the other hand, the Technical 
Evaluation effort is significant and comparable to that in 
the new category for the Operational Test & Evaluation 
phase. We retain the original percent effort value (12.4%) 
for that cell. An example of such a exercise yields a series 
of weights as shown in Figure 3, defined for each reuse 
category, which aggregates into a set of reuse weight values 
for size drivers of nominal complexity (i.e., levels of 
difficulty), as shown in Figure 4. 

 
 

 

Fig. 2.  Life cycle systems engineering effort distribution [15] 
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Fig. 3.  Activity-based weight derivation for reuse categories 

 
 

New Managed Adopted Modified Deleted 

100.0% 15.4% 43.4% 64.7% 50.7% 

Fig. 4.  Aggregated weights for the reuse categories 
 

This analysis was accomplished through a series of key 
stakeholder round-table sessions. Alternatively, the same 
outcome can be achieved through either Delphi surveys or 
collection and analysis of historical program data.   

The reuse weights are summarized along a continuum in 
Figure 5 to illustrate two additional points.  First, it should 
be noted that the weight values in Figure 4 represent the 
nominal values, or the mode, for the respectively 
categories. The exact weights may fall within a range of 
possible values that may be greater than or less than the 
suggested values or a set of distributions whose mode is 
represented by the values in Figure 4. This presents an 
opportunity for further tailoring by each organization that 
wishes to incorporate reuse into their COSYSMO 
implementation and to more accurately capture 
organizational productivity. For example, in the modified 
case the corresponding weight may be lower than 0.65 in 
situations where there is very little modification taking 
place. Such a situation may arise when the color of an 
airplane is changed from a Forest Green to Sea Grey.  This 
is a simple modification of a requirement that does not 
demand critical changes in systems engineering effort. On 
the other hand, significant modifications may emerge which 
can result in a higher weight for the modified parameter. 
This may arise when the previous requirement is modified 
to work in a new environment that was previously 
considered. Such a scenario frequently arises when 
companies attempt to modify system components from 
commercial helicopters to military helicopters. Different 
operational and performance criteria apply when such 
components are incorporated into the military domain. 

 

 
Fig. 5.  Reuse Continuum  

 
The second point illustrated by the continuum in Figure 5 

is the existence of the Modified vs. New Threshold. This is 
relevant in cases where extreme modification of 
requirements causes the original reused requirement to be 
more complex than a new requirement. In this situation, the 
systems engineer must make a tradeoff decision to 
determine whether it is better to “throw away” the old 
requirement and start with a new one or keep the old 
requirement in spite of its extra expense. The range of 
possible weights for modified requirements may 
theoretically exceed the weight for new, but the exploration 
of such values was beyond the scope of this analysis. 

The approach as presented above can be followed to 
derive organization-specific reuse weights. Operationally, it 
is important to note that these weights, once defined or 
derived in an organization, should be applied to all data 
points consistently, between the calibration data and new 
estimates.  It is not to be redefined for each data point or 
new estimate. 

 

VI. A PRACTICAL APPLICATION EXAMPLE 
For the past two years, BAE Systems has been 

developing a systems engineering estimating tool based on 
COSYSMO to locally calibrate the model to its product 
lines. During the course of this project, a significant amount 
of historical data was collected to calibrate the model to 
leading products and platforms. The COSYSMO 
development at BAE Systems provided the first 
organizational implementation and validation of the reuse 
model. In fact, BAE Systems has been part of the core 
stakeholder group and has led the industry’s effort in 
defining the reuse extension. In order to achieve a practical 
and deployable implementation, the reuse definition was 
elaborated and additional specifications were added to 
better adapt to its engineering process and product lines and 
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to ensure higher level of correlations in data collection for 
the organization, while maintaining a more generic 
definition for the industry model for a broader community.  

To develop BAE Systems instantiation of the reuse 
model, we established the following objectives or 
guidelines:  

• Be consistent with industry definition.  Define 
such reuse categories by instantiating and refining 
the industry definitions so as to avoid any potential 
conflicts and inconsistencies. 

• Provide clear and consistent operational 
guidelines for driver counting and classification, 
by using unambiguous verbiage in the reuse 
definition.   

• Establish clear boundaries between categories to 
ensure easy separation and consistency. 

• Enable further extension of reuse, if necessary, 
and facilitate customer definition of additional 
reuse levels. 

COSYSMO innately is a subjective model, which leads 
its driver (size and cost) definitions to individual 
interpretation and, consequently, possible inconsistent 
sizing of the systems and estimation of effort. One of the 
challenges for the operational use has been the guidance in 
understanding the driver definitions and their classification 
categories. With the instantiated model, clear boundaries 
between the reuse categories can be established so that 
there are limited degrees of freedom for individual 
interpretation in counting the size drivers. In other words, 
clear steps rather than ramps between the reuse categories 
help delineate the differences using characteristics that are 
common to all programs. 

The approach is to define a classification framework for 
counting size drivers with two orthogonal dimensions to 
enable finer grain estimation of these drivers: reuse by 
systems engineering activities and levels of difficulties by 
relative effort (i.e., easy, nominal and difficult, as defined 
by COSYSMO). Six high-level, signature life-cycle 
systems engineering activities were identified.  Easy to 
apply in practice and can be related by most systems 
engineers, they were used as the key discriminators in 
delineating the reuse categories: 1) Technical Management; 
2) Requirement Definition; 3) Design Analysis; 4) 
Architecture & Implementation Changes; 5) Tailoring and 
Interface Changes; 6) Verification & Validation. The 
definition for the reuse categories is based on a 
determination of required number of these activities to 
realize a size drive in an end-to-end development life cycle. 

Therefore, at the BAE Systems, we further instantiated 
reuse model and provided more specific definitions for the 
five categories, as follows (differences are italicized): 

1. New: Items that are completely new. 
2. Modified: Items that are incorporated but require 

tailoring or interface changes, and verification 
and validation testing. 

3. Adopted: Items that are incorporated unmodified 
but require verification and validation testing.  
Also known as “black box” reuse. 

4. Managed: Items that are incorporated unmodified 
and untested, and require no additional SE effort 
other than technical management. 

5. Deleted: Items that are removed from a legacy 
system, which require design analysis, tailoring or 
interface changes, and verification and validation 
testing. 

Several points are worth noting for the above definitions.   
First, these definitions are directly instantiated from the 
industry version and inherited all its defined categories: 
new, managed, adopted, managed, and deleted. Additional 
clarification of the base definitions was added with the 
designated systems engineering activities in mind. These 
activity-based clarifications such as technical management, 
variation and validation, provide further discriminators and 
boundary conditions for operational use. For this purpose, a 
reference table was created, as shown in Figure 6, to serve 
as a Rosetta Stone between the industry definitions and the 
ones used at BAE Systems. 

 

 
Fig. 6 - Activities-based classification wizard for reuse classification 

 
Secondly, we strongly advocated and recommended the 

category called “managed” to the industry definition, which 
we believe is important in capturing the intricacies of 
today’s evolutionary and spiral development, as well as 
prevalent teaming arrangement between industry partners. 
This category is intended for two main circumstances. The 
first is when a new system incorporates legacy elements 
that have already been developed and verified and validated 
from a prior system, the systems engineering activities now 
are mostly limited to technical management. The second 
situation is when a part of the system under development is 
subcontracted out or uses COTS/GOTS-based components 
that are “turn-key” or “plug-and-play”. The requirements 
and other drivers related to these subtracted parts have 
already been verified and validated by the providers. To the 
prime contractor, the majority of the activities required are 
technical (subcontract) management in nature. 

Finally, the new items by definition are new and 
generally unprecedented. However, the modified category 
can cover such a wide range of spectrum in terms of 
degrees of change or modification that it is difficult to 
maintain consistency. To mitigate this problem, we further 
confine the category to those items that are basically reused 
as-is and that only allow the degree of modification limited 
to that of tailoring or interface changes. As a result, any 
legacy elements that require higher-degree modifications 
involving architecture and implementation changes are 
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classified as new. 
The validate the reuse model, an application to a set of 

historical programs from several lines of business (LoB) 
and major sites in the Electronics and Integrated Solutions 
(E&IS) Operating Group was performed. The result is 
significantly improved data correlation and calibrations 
with higher-degree of accuracy and confidence level than 
before. Figure 7a shows the data before applying the reuse 
model and Figure 7b shows the same data points after 
applying the reuse model, with everything else in the 
COSYSMO model held constant. 

It is evident from the heteroscedasticity of the data that 
the reuse model significantly improved the predictive 
accuracy of the COSYSMO model.  This improvement is a 
result of adjusting the model closer to reality, as it has been 
proved by practical experience that reuse is more the rule 
rather than the exception. 
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(a)  Before applying reuse model, all drivers are counted as new 
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(b) After apply the reuse model 

Fig. 7 – Distribution of the same data set, before (a) and after (b) applying 
the BAE Systems extended COSYSMO reuse model 

 

VII. CONCLUSION AND RECOMMENDATIONS 
In this paper, we have defined a reuse extension model 

for the COSYSMO size drivers. We presented an industry 
definition, as well as an organizational implementation as 
the practical validation and implementation example of the 

reuse model. We discussed the approach applied to this 
development and the method used for deriving the reuse 
weights. We also presented the updated COSYSMO size 
driver definitions that are consistent and compatible with 
the reuse extension. 

To implement this extension for the operational use, an 
organization can directly apply the method presented in this 
paper. It may consider further instantiating the definitions 
to establish more concrete and defined boundaries that are 
tailored to the business model, product lines, and 
engineering process of the respective organizations. 
Organizations may also find it necessary to add additional 
reuse categories. If so, it is recommended that the original 
reuse categories be preserved rather than changing the 
established categories. 

The weights for reuse, once defined, should be 
consistently applied across all data points and over time, 
between calibration data and new estimates. They should 
not be changed for a single estimate and calibration point. 
Any change to these definitions may require recollection of 
all the calibration data points, and change to the derived 
weights may require recalculation of all the system sizes. 
This is required for the necessary level of consistency 
between programs and between calibrations and new 
estimates. In other words, this is to ensure that consistency 
of requirements is realized across programs and system size 
is measured with the same scale and counting rules.   

As a community of systems engineers interested in cost 
estimation, we cannot dictate each individual organization’s 
extension of the reuse model, but we should, however, 
agree on a set of values for reuse weights. This is desirable 
to ensure consistent understanding of estimate system size 
and better communicate basis of estimates. This will be a 
continuing effort in the refinement of the reuse approach 
which will involve feedback from key stakeholders from 
leading organizations. 

The initial version of COSYSMO has established a 
frontier for systems engineering cost estimation. However, 
as with any other methodology in its early stage, it requires 
continuous improvement so that it can gain the level of 
maturity required by operational use and potentially as a 
new industry standard. The authors are also engaged in 
other enhancement efforts to further improve the fidelity of 
the model. One of these areas is the cost drivers or the 
effort multipliers used in the model to scale the estimate 
effort based on the system size. Another is the extension of 
the reuse concepts to other systems engineering artifacts 
such as knowledge [16, 17], documentation, and test 
procedures. We are following a similar strategy in 
combining expert opinion and historical data to develop the 
most realistic and accurate model possible and will report 
the progress of these activities in the near future. 
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