
DRAFT - UNDER REVIEW

1

Abstract—Reuse in systems engineering is a frequent but

poorly understood phenomenon. Nevertheless, it has a significant
impact on estimating the appropriate amount of systems
engineering effort with models like the Constructive Systems
Engineering Cost Model (COSYSMO). Practical experience
showed that the initial version of COSYSMO, a model based on a
“build from the scratch” philosophy, needed to be refined in
order to incorporate reuse considerations that fit today’s
industry environment. The notion of reuse recognizes the effect
of legacy system definition in engineering a system and
introduces multiple reuse categories for classifying each of the
four COSYSMO size drivers – requirements, interfaces,
algorithms, and operational scenarios. It modifies the counting
rules for the COSYSMO size drivers and updates the definition
of system size in COSYSMO. It provides an enabling framework
for estimating a system under incremental and spiral
development.

In this paper, we present (1) the definition of the COSYSMO
reuse extension and the approach employed to define this
extension; (2) the updated COSYSMO size driver definitions that
are consistent with the reuse model; (3) the method applied to
defining the reuse weights used in the modified parametric
relationship; (4) a practical implementation example that
instantiates the reuse model by an industry organization and the
empirical data that provided practical validation of the extended
COSYSMO model; and (5) recommendations for organizational
implementation and deployment of this extension.

Index Terms—systems engineering, reuse, metrics, cost
estimation

I. INTRODUCTION
LMOST all systems have a legacy. Today, more often
than not, systems are developed based on an evolution of

previous systems. New releases of software are developed by
modifying and enhancing a previous release. Similarly, new
generations of airplanes, ships, and automobiles are developed
by improving the functionality and performance of previous

Manuscript received August 9, 2008. This work was supported in part by
BAE Systems, the Industrial Affiliates of the Center for Systems and Software
Engineering, and the Consortium members of the Lean Advancement
Initiative.

G. Wang is with BAE Systems, Reston, VA 20190 USA (phone: 703-668-
4259; fax: 703-668-4224; e-mail: gan.wang@baesystems.com).

R. Valerdi is with the Engineering Systems Division, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA (e-mail:
rvalerdi@mit.edu).
 J. Fortune is a doctoral student in the Industrial and Systems Engineering
Department, University of Southern California, Los Angeles, CA 90089 USA
(email: fortune@usc.edu).

models. In many situations, product lines are managed
through incremental improvement of previous system
definitions. In other situations, existing systems are
modernized through technology insertions and obsolescence
management. Although system-level examples where
previously developed components and capabilities have been
leveraged can generally be easily identified, the current
literature fails to address how such instances of reuse at the
system-level should be appropriately quantified [1]. In other
domains, such as software, reuse is a much better documented
concept [2].
 When a “new system” is developed, it commonly uses
existing components, proven functionality, or established
architecture. Across industry, we have witnessed ever
increasing trends of COTS-integration in system development
and ever diminishing endeavors of constructing something
completely new from a “clean slate”. However, incorporating
disparate elements together into a developing system is often
no easy task, as the integration of legacy elements can
negatively impact project resources, sometimes substantially
[3]. Knowing this, addressing reuse from a systems
perspective, particularly the impact on the systems
engineering effort required throughout the life cycle, is critical
to accurately estimating the development cost of a system.

One method for estimating the amount of systems
engineering effort required for a project is the Constructive
Systems Engineering Cost Model (COSYSMO) [4].
Developed at the University of Southern California with the
support of a consortium of academic, industry, and
government organizations, COSYSMO is a parametric model
for estimating the systems engineering and integration effort
required for the conceptualization, design, test, and
deployment of software and hardware systems and executing
projects that develop such a system. COSYSMO is part of the
COCOMO II suite of models and developed through a similar
methodology. COCOMO, originally developed in 1981 and
revised as COCOMO II in 2000, is the most widely used,
thoroughly documented and well calibrated software cost
model [5]. Applying a similar approach in COCOMO to the
systems domain, COSYSMO defines a parametric relationship
that estimates systems engineering effort under nominal
schedule, in person months, based on four size drivers –
system requirements, system interfaces, system algorithms,
and operational scenarios – and adjusted by fourteen effort
multipliers, which capture the product and project
environment and complexity factors. COSYSMO defines a
sizing quantity called “system size” from a weighted sum of

Reuse in Systems Engineering
Gan Wang, Member, IEEE, Ricardo Valerdi, Member, IEEE and Jared Fortune, Member, IEEE

A

DRAFT - UNDER REVIEW

2

the four size drivers. The parametric relationship is shown
below (1):

∏∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14

1
,,,,,,)(

j
j

E

k
kdkdknknkekeNS EMwwwAPM (1)

Where,

PMNS = effort in Person Months (Nominal Schedule)

A = calibration constant derived from historical
project data

k = {REQ, IF, ALG, SCN}

wx = weight for “easy”, “nominal”, or “difficult”
size driver

xΦ = quantity of “k” size driver

E = represents (dis)economies of scale

EM = effort multiplier for the jth cost driver. The
geometric product results in an overall effort
adjustment factor to the nominal effort.

Being the first of its kind, the model has, in a very short

period of time, caught the attention of the systems engineering
community, industry and academia alike. It has demonstrated
the potential to bridge a long-time gap between system
complexity and its corresponding systems engineering effort
estimate. Organizations have made various attempts to pilot
the model and apply it to practical applications [6, 7].

Early application of COSYSMO, however, has revealed
that the model did not recognize the concept of reuse in
systems engineering [8, 9]. It assumes that all of its four size
drivers – system requirements, system interfaces, system
algorithms, and operational scenarios – are new entities when
defining the system size. In other words, the model is based
on a “build from scratch” philosophy and assumes all systems
are developed from a “clean slate”.

This differs from how systems are typically built today
since requirements for a new system may be “adopted” from
an existing system. Furthermore, some of the new system’s
requirements may be “modified” from a prior system.
Moreover, the evolution of system requirements over the
system life cycle may result in “deleted” requirements from
the initial configuration baseline. The same situations may
apply to the other three size drivers – interfaces, algorithms,
and operational scenarios. As the result, the calculated system
size does not reflect reusing elements of the system definition
and, consequently, can result in inaccurate estimate of systems
engineering effort required to realize such a system. This
problem intensifies when dealing with the incremental and
spiral development.

Therefore, we propose incorporating the concept of reuse
for estimating the size of a system, in order for COSYSMO to
more accurately estimate the systems engineering effort.

II. DEVELOPMENT APPROACH
The approach taken to represent the system size is

analogous to that used to represent software code size in those
frequent instances in which there are several categories of
code, including new and different levels of reuse, as well as
deleted [10, 11, 12]. In the case of software, the size of the
code is often represented as “ESLOC,” or “Equivalent New
Source Lines of Code.” ESLOC is computed as the weighted
sum of the new, the reused, the modified, and the deleted
code. Similarly, we define “Equivalent Requirements” or
“eReqs” in COSYSMO as a function of the weighted sum of
the new, reused, modified, and deleted requirements in a
system. This reuse approach COSYSMO is motivated by the
similar model defined by COCOMO II [5]. Therefore,
additional consideration has been given so that the definitions
of reuse are conceptually consistent between COSYSMO and
COCOMO II since they belong to the same family of models.

When defining the concept of reuse for COSYSMO, the
following basic principles hold true.

1. COSYSMO is an open model, developed by the
community and for the community. Users are free to
change and/or extend the model.

2. On the other hand, it is beneficial for the industry to
agree on the basic definition, relationship and
parameters to better communicate basis of estimates.

COSYSMO has been developed as an open model by the
community of academia, industry and government for the use
of the general public. This implies that everyone is free to
adopt, modify, and/or extend the model. In fact, it is intended
for organizations to adapt to their own engineering processes
and business models, and to develop local, tailored estimating
tools. In defining reuse as another aspect of the model, it
should not, in any way, restrict or hinder individual
applications or adaptations of this model. In fact, it should
help to facilitate such a local implementation.

On the other hand, similar to other cost estimating models,
COSYSMO provides a methodology for the industry at large
to measure and communicate productivity and basis of
estimate. For the industry to best communicate such a measure
of productivity and basis of estimate, it is important that the
same basic definitions are consistently understood and
applied. This includes definition of terms and nomenclatures,
the basic estimating relationship, and the guidelines for
measurement.

However, the above two principles could inherently be
conflicting with each other. Free adaptation of the model
could lead to individual inconsistent definitions and
interpretations of the model. While over-restriction of the
model definition could limit the application of the model by
organizations, care must be taken to strike a fine balance to
preserve both of the above principles, so that it does not over-
constrain its application and adaptation across the industry
and, at the same time, preserve the integrity of the model.

The approach taken to develop the reuse concept was to

DRAFT - UNDER REVIEW

3

summarize the leading organizational definitions and to
aggregate them based on a “minimum common denominator”
strategy. Several organizations including BAE Systems,
Lockheed Martin and Raytheon have been piloting and
implementing this reuse concept. There are some subtle
differences in the definitions used, but the basic concept is the
same. For this effort, the following guidelines for the industry
definition were defined.

A. Establish a minimum set of reference categories for
each size driver (i.e., system requirements, system
interfaces, system algorithms, and operational
scenarios), so that organizations can either directly
apply and/or expand to additional reuse categories.

B. Provide minimum common-denominator definitions
so that organizations can use, refine, and/or
instantiate as appropriate to fit their operational
needs.

Goal “A” indicates that we define only those reuse
categories that all stakeholders can agree on as the common
denominator for the community, and these categories are
intended as the reference for an organization in its own
implementation to either directly apply or expand to additional
categories if it deems necessary. In other words, the intent is
to always maintain this set of categories, but one may add
other categories, generally as subdivisions, if appropriate.
Goal “B” states that the definitions are intentionally structured
with the minimum common denominator language so that
organizations can either directly use or, if necessary, may
refine and substantiate the definitions to fit their operational
use. In other words, the industry definitions are intentionally
termed at a high level to cover wide ranges of applications.

Several industry-level workshops have been conducted
under the stated guidelines to achieve the community
agreement on the pilot implementation and validation of the
reuse model in leading organizations. The following reuse
extension has been defined through such as a community
agreement.

III. THE COSYSMO REUSE EXTENSION
The COSYSMO reuse extension defines five categories for

counting its size drivers, termed: new, modified, adopted,
deleted, and managed. The quantities of each of the four
COSYSMO size drivers, i.e., number of requirements, number
of interfaces, number of algorithms, and number of
operational scenarios, may be classified into the follow five
categories of reuse:

1. New: Items that are completely new.
2. Modified: Items that are inherited, but are tailored.
3. Adopted: Items that are incorporated unmodified.

Also known as “black box” reuse.
4. Managed: Items that are incorporated unmodified

and untested.
5. Deleted: Items that are removed from a system.

As an example, a requirement can be new, which no

precedence can be found for the system to be developed. New
items are generally unprecedented and may be associated with
a low level of familiarity. A requirement may be modified in
the sense that a heritage element is reused, but needs a limited
level of modification or tailoring for it to be fully incorporated
in the new system. A requirement may also be adopted where
the indicated functionality and performance has previously
been developed and can therefore be incorporated without any
changes. This is commonly referred to as “black box” reuse
since the requirement is literally copied from a previous effort
remaining unchanged. A requirement that is considered
managed is incorporated typically as a turn-key component
where there is minimal development effort, except for
possibly engineering management, on the part of the
contractor since a subcontractor may be responsible for its
delivery. Deleted requirements are those that are already in the
legacy system or architecture design, but need to be removed
from the current system definition based on customer need or
contractual commitments. Consequently, each of these five
types of reuse requires different degrees of systems
engineering effort.

It is important to note that the modified category spans a
wide range of possible effort. Modification may entail a
simple change in an interface connection to a complete
revamp of the entire system architecture. The intent of the
modified category is to capture those elements that involve
tailoring changes only, with no changes to the internal
architecture. Therefore, those items that are inherited but
require a significant amount of architecture or implementation
changes should be counted as new.

For each size driver, three complexity levels are defined in
COSYSMO: easy, nominal, and difficult. These levels are
invariant in the context of reuse. Depending upon the point of
view, within each category of reuse, there are three levels of
complexity. Alternatively, within each level of difficulty,
there can be five categories of reuse. Conceptually, the two
notions – categories of reuse and levels of difficulty – form a
two dimensional classification framework for size drivers that
provide adequate level of granularity in determining system
size. Operationally, when classifying drivers in terms of reuse,
there are two alternative sequences, purely depending upon
user preferences. When counting requirements, for example,
they can first be classified into the five reuse categories. Next,
within each reuse category, they can be further divided into
three levels of complexity. This additional dimension yields a
revised COSYSMO parametric relationship that incorporates
the concept of reuse (2):

∏∑ ∑
=

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+Φ+Φ⋅=

14

1
,,,,,,)(

j
j

E

k r
kdkdknknkekerNS EMwwwwAPM

(2)

Where:

PMNS = effort in Person Months (Nominal Schedule)

DRAFT - UNDER REVIEW

4

A = calibration constant derived from historical
project data

k = {REQ, IF, ALG, SCN}

r = {New, Modified, Adopted, Deleted, Managed}

wr = weight for defined degrees of reuse

wx = weight for “easy”, “nominal”, or “difficult”
size driver

xΦ = quantity of “k” size driver

E = represents diseconomies of scale

EM = effort multiplier for the jth cost driver. The
geometric product results in an overall effort
adjustment factor to the nominal effort.

In contrast to the COSYSMO equation shown earlier (1),

the revised relationship (2) introduces reuse as an additional
dimension for each of the size drivers.

IV. MODIFIED SIZE DRIVER DEFINITIONS
With the concept of reuse incorporated into its parametric

relationship, the COSYSMO size driver definitions require
their amendments. As an example, the original definition for
algorithm contains the verbiage: “This driver represents the
number of newly defined or significantly altered functions…”,
which directly conflicts with the concept of reuse such as
“adopted”. The modifications to the definitions are
underlined.

These proposed changes in size driver definitions were
obtained with industry feedback at the COSYSMO working
group meeting at the Practical Software & Systems
Measurement User Group Meeting in Denver in July 2007. As
the result, the amended COSYSMO size driver definitions,
consistent with the reuse extension, are given as below.

A. Number of Systems Requirements
This driver represents the number of new, modified,

adopted, managed, and deleted requirements for the system-
of-interest at the system level or the level of “sell-off” to
customer, which may include derived requirements at the
same level. The quantity of requirements includes those
related to the effort involved in system engineering the system
interfaces, system specific algorithms, and operational
scenarios. Requirements may be functional, performance,
feature, or service-oriented in nature depending on the
methodology used for specification. They may also be
defined by the customer or contractor. Each requirement must
have systems engineering effort associated with it such as
verification and validation (V&V), functional decomposition,
functional allocation, etc. System requirements can typically
be quantified by counting the number of applicable “shalls” in
the system or marketing specification.

Easy Nominal Difficult

- Simple to implement - Moderately difficult to
implement

- Complex to implement
or engineer

- Traceable to source - Can be traced to source
with some effort

- Hard to trace to source

- Little requirements
overlap

- Some overlap - High degree of
requirements overlap

B. Number of System Interfaces
This driver represents the number of new, modified,

adopted, managed, and deleted shared physical and logical
boundaries between system components or functions (internal
interfaces) and those external to the system (external
interfaces). These interfaces typically can be quantified by
counting the number of unique external and internal system
interfaces among ISO/IEC 15288-defined [13] system
elements at the system level for the system-of-interest.

Easy Nominal Difficult

- Simple - Moderate complexity - Complex protocol(s)

- Uncoupled - Loosely coupled - Highly coupled

- Strong consensus - Moderate consensus - Low consensus

- Well behaved - Predictable behavior - Poorly behaved

C. Number of System-Specific Algorithms
This driver represents the number of new, modified,

adopted, managed, and deleted mathematical algorithms to be
derived in order to achieve the system functional and
performance requirements. As an example, this could include
a complex aircraft tracking algorithm like a Kalman Filter
being derived using existing experience as the basis for the all
aspect search function. Another example could be a
discrimination algorithm being derived to identify friend or
foe function in space-based applications. The number can be
quantified by counting the number of unique algorithms
needed to realize the requirements specified in the system
specification or mode description document.

Easy Nominal Difficult

-Algebraic - Straight forward
calculus

- Complex constrained
optimization; pattern
recognition

-- Straightforward
structure

- Nested structure with
decision logic

- Recursive in structure
with distributed control

- Simple data - Relational data - Noisy, ill-conditioned

DRAFT - UNDER REVIEW

5

data

- Timing not an issue - Timing a constraint - Dynamic, with timing
and uncertainty issues

- Adaptation of library-
based solution

- Some modeling
involved

- Simulation and
modeling involved

D. Number of Operational Scenarios
This driver represents the number of new, modified,

adopted, managed, and deleted operational scenarios that a
system must satisfy in order to accomplish its intended
mission. An operational scenario must be end-to-end and
triggered by an operational event. Such scenarios include both
the nominal stimulus-response thread plus all of the off-
nominal threads resulting from bad or missing data,
unavailable processes, or other exceptional conditions. The
number of scenarios can typically be quantified by counting
the number of use cases or operational modes captured in the
user manual, including off-nominal extensions, developed as
part of the operational architecture.

Easy Nominal Difficult

- Well defined - Loosely defined - Ill defined

- Loosely coupled - Moderately coupled - Tightly coupled or
many
dependencies/conflicting
requirements

- Timelines not an issue - Timelines a constraint - Tight timelines through
scenario network

- Few, simple off-
nominal threads

- Moderate number or
complexity of off-
nominal threads

- Many or very complex
off-nominal threads

V. WEIGHT DEFINITION FOR REUSE CATEGORIES
We present in this section the approach used to define the

weights for the reuse categories in the COSYSMO equation
(2). It is important to note that the approach outlined below is
designed to capture the statistical behavior of a group of the
projects, rather than individual behavior of a particular
project. In fact, on an individual basis, a project may exhibit a
vastly different pattern of labor distribution relatively to reuse.
An adopted or modified element could prove to be more costly
than a brand-new element in terms of life cycle systems
engineering effort.

The approach taken is bottoms-up activity-based, by which
we define the reuse weights by evaluating life cycle systems
engineering activities. In particular, we examined the 33
systems engineering activities in five activity groups defined
by the ANSI/EIA 632 standard [14] relative to four life cycle
phases derived from (but not exactly the same as) the stages
defined in ISO/IEC 15288, Systems Life Cycle Processes.

The result of this analysis is presented in the matrix in
Figure 1. Along the x-axis, the four life cycle phases are
repeated for each defined reuse category, namely,
Conceptualize, Develop, Operational Test & Evaluation, and
Transition to Operation.

Along the y-axis are the 33 systems engineering activities in
the five activity groups. For each defined reuse category, we
identify the applicable activities by life cycle, which derive
the sparsely populated matrix in Figure 1. The analysis
involves the determination of applicability of an activity
across the life cycle for a particular reuse category. As an
example, realizing a new requirement into a product would in
general incur all of the activities as specified by EIA-632. A
reused requirement, on the other hand, would likely exclude
some of the activities. The underlying assumption is that a
reused element generally saves systems engineering effort
compared to a new element. This matrix allows qualitative
distinction between relative scales for reused and new.

DRAFT - UNDER REVIEW

6

Fig. 1. Systems engineering activity vs. life cycle phase mapping by reuse categories

The next step is to turn the qualitative relationship to a

quantitative one. This is done with an effort distribution
table derived from an industry wide-band Delphi survey
[15], as shown in Figure 2. Similarly, the four life cycle
phases from ISO/IEC 15288 and the five systems
engineering activities from ANSI/EIA 632 are presented.
The value in each cell of the matrix represents the
percentage of the total effort applied to a particular activity
in a particular life cycle phase. The total sums to 100%,
which corresponds to the life cycle effort of developing a
new system or system element, from concept to delivery.

Each systems engineering process yields a unique effort
profile. For example, the Acquisition and Supply activity
typically represents 7% of the total systems engineering
effort across four phases of the life cycle. By combining the
results in Fig 1 with the data in Fig 2, an approximation of
the weight of a particular activity can be prorated for
different reuse categories. For example, in the adopted

category, the effort for System Design process is not
significant in the Development phase. Hence, we will
assign the value of 0% or remove the original effort value
(12%) for that cell. On the other hand, the Technical
Evaluation effort is significant and comparable to that in
the new category for the Operational Test & Evaluation
phase. We retain the original percent effort value (12.4%)
for that cell. An example of such a exercise yields a series
of weights as shown in Figure 3, defined for each reuse
category, which aggregates into a set of reuse weight values
for size drivers of nominal complexity (i.e., levels of
difficulty), as shown in Figure 4.

Fig. 2. Life cycle systems engineering effort distribution [15]

DRAFT - UNDER REVIEW

7

Fig. 3. Activity-based weight derivation for reuse categories

New Managed Adopted Modified Deleted

100.0% 15.4% 43.4% 64.7% 50.7%

Fig. 4. Aggregated weights for the reuse categories

This analysis was accomplished through a series of key
stakeholder round-table sessions. Alternatively, the same
outcome can be achieved through either Delphi surveys or
collection and analysis of historical program data.

The reuse weights are summarized along a continuum in
Figure 5 to illustrate two additional points. First, it should
be noted that the weight values in Figure 4 represent the
nominal values, or the mode, for the respectively
categories. The exact weights may fall within a range of
possible values that may be greater than or less than the
suggested values or a set of distributions whose mode is
represented by the values in Figure 4. This presents an
opportunity for further tailoring by each organization that
wishes to incorporate reuse into their COSYSMO
implementation and to more accurately capture
organizational productivity. For example, in the modified
case the corresponding weight may be lower than 0.65 in
situations where there is very little modification taking
place. Such a situation may arise when the color of an
airplane is changed from a Forest Green to Sea Grey. This
is a simple modification of a requirement that does not
demand critical changes in systems engineering effort. On
the other hand, significant modifications may emerge which
can result in a higher weight for the modified parameter.
This may arise when the previous requirement is modified
to work in a new environment that was previously
considered. Such a scenario frequently arises when
companies attempt to modify system components from
commercial helicopters to military helicopters. Different
operational and performance criteria apply when such
components are incorporated into the military domain.

Fig. 5. Reuse Continuum

The second point illustrated by the continuum in Figure 5

is the existence of the Modified vs. New Threshold. This is
relevant in cases where extreme modification of
requirements causes the original reused requirement to be
more complex than a new requirement. In this situation, the
systems engineer must make a tradeoff decision to
determine whether it is better to “throw away” the old
requirement and start with a new one or keep the old
requirement in spite of its extra expense. The range of
possible weights for modified requirements may
theoretically exceed the weight for new, but the exploration
of such values was beyond the scope of this analysis.

The approach as presented above can be followed to
derive organization-specific reuse weights. Operationally, it
is important to note that these weights, once defined or
derived in an organization, should be applied to all data
points consistently, between the calibration data and new
estimates. It is not to be redefined for each data point or
new estimate.

VI. A PRACTICAL APPLICATION EXAMPLE
For the past two years, BAE Systems has been

developing a systems engineering estimating tool based on
COSYSMO to locally calibrate the model to its product
lines. During the course of this project, a significant amount
of historical data was collected to calibrate the model to
leading products and platforms. The COSYSMO
development at BAE Systems provided the first
organizational implementation and validation of the reuse
model. In fact, BAE Systems has been part of the core
stakeholder group and has led the industry’s effort in
defining the reuse extension. In order to achieve a practical
and deployable implementation, the reuse definition was
elaborated and additional specifications were added to
better adapt to its engineering process and product lines and

DRAFT - UNDER REVIEW

8

to ensure higher level of correlations in data collection for
the organization, while maintaining a more generic
definition for the industry model for a broader community.

To develop BAE Systems instantiation of the reuse
model, we established the following objectives or
guidelines:

• Be consistent with industry definition. Define
such reuse categories by instantiating and refining
the industry definitions so as to avoid any potential
conflicts and inconsistencies.

• Provide clear and consistent operational
guidelines for driver counting and classification,
by using unambiguous verbiage in the reuse
definition.

• Establish clear boundaries between categories to
ensure easy separation and consistency.

• Enable further extension of reuse, if necessary,
and facilitate customer definition of additional
reuse levels.

COSYSMO innately is a subjective model, which leads
its driver (size and cost) definitions to individual
interpretation and, consequently, possible inconsistent
sizing of the systems and estimation of effort. One of the
challenges for the operational use has been the guidance in
understanding the driver definitions and their classification
categories. With the instantiated model, clear boundaries
between the reuse categories can be established so that
there are limited degrees of freedom for individual
interpretation in counting the size drivers. In other words,
clear steps rather than ramps between the reuse categories
help delineate the differences using characteristics that are
common to all programs.

The approach is to define a classification framework for
counting size drivers with two orthogonal dimensions to
enable finer grain estimation of these drivers: reuse by
systems engineering activities and levels of difficulties by
relative effort (i.e., easy, nominal and difficult, as defined
by COSYSMO). Six high-level, signature life-cycle
systems engineering activities were identified. Easy to
apply in practice and can be related by most systems
engineers, they were used as the key discriminators in
delineating the reuse categories: 1) Technical Management;
2) Requirement Definition; 3) Design Analysis; 4)
Architecture & Implementation Changes; 5) Tailoring and
Interface Changes; 6) Verification & Validation. The
definition for the reuse categories is based on a
determination of required number of these activities to
realize a size drive in an end-to-end development life cycle.

Therefore, at the BAE Systems, we further instantiated
reuse model and provided more specific definitions for the
five categories, as follows (differences are italicized):

1. New: Items that are completely new.
2. Modified: Items that are incorporated but require

tailoring or interface changes, and verification
and validation testing.

3. Adopted: Items that are incorporated unmodified
but require verification and validation testing.
Also known as “black box” reuse.

4. Managed: Items that are incorporated unmodified
and untested, and require no additional SE effort
other than technical management.

5. Deleted: Items that are removed from a legacy
system, which require design analysis, tailoring or
interface changes, and verification and validation
testing.

Several points are worth noting for the above definitions.
First, these definitions are directly instantiated from the
industry version and inherited all its defined categories:
new, managed, adopted, managed, and deleted. Additional
clarification of the base definitions was added with the
designated systems engineering activities in mind. These
activity-based clarifications such as technical management,
variation and validation, provide further discriminators and
boundary conditions for operational use. For this purpose, a
reference table was created, as shown in Figure 6, to serve
as a Rosetta Stone between the industry definitions and the
ones used at BAE Systems.

Fig. 6 - Activities-based classification wizard for reuse classification

Secondly, we strongly advocated and recommended the

category called “managed” to the industry definition, which
we believe is important in capturing the intricacies of
today’s evolutionary and spiral development, as well as
prevalent teaming arrangement between industry partners.
This category is intended for two main circumstances. The
first is when a new system incorporates legacy elements
that have already been developed and verified and validated
from a prior system, the systems engineering activities now
are mostly limited to technical management. The second
situation is when a part of the system under development is
subcontracted out or uses COTS/GOTS-based components
that are “turn-key” or “plug-and-play”. The requirements
and other drivers related to these subtracted parts have
already been verified and validated by the providers. To the
prime contractor, the majority of the activities required are
technical (subcontract) management in nature.

Finally, the new items by definition are new and
generally unprecedented. However, the modified category
can cover such a wide range of spectrum in terms of
degrees of change or modification that it is difficult to
maintain consistency. To mitigate this problem, we further
confine the category to those items that are basically reused
as-is and that only allow the degree of modification limited
to that of tailoring or interface changes. As a result, any
legacy elements that require higher-degree modifications
involving architecture and implementation changes are

DRAFT - UNDER REVIEW

9

classified as new.
The validate the reuse model, an application to a set of

historical programs from several lines of business (LoB)
and major sites in the Electronics and Integrated Solutions
(E&IS) Operating Group was performed. The result is
significantly improved data correlation and calibrations
with higher-degree of accuracy and confidence level than
before. Figure 7a shows the data before applying the reuse
model and Figure 7b shows the same data points after
applying the reuse model, with everything else in the
COSYSMO model held constant.

It is evident from the heteroscedasticity of the data that
the reuse model significantly improved the predictive
accuracy of the COSYSMO model. This improvement is a
result of adjusting the model closer to reality, as it has been
proved by practical experience that reuse is more the rule
rather than the exception.

System Size (eReq)

Sy
st

em
s

En
gi

ne
er

in
g

Ef
fo

rt
 (S

E
H

ou
rs

)

(a) Before applying reuse model, all drivers are counted as new

System Size (eReq)

Sy
st

em
s

En
gi

ne
er

in
g

Ef
fo

rt
 (S

E
H

ou
rs

)

(b) After apply the reuse model

Fig. 7 – Distribution of the same data set, before (a) and after (b) applying
the BAE Systems extended COSYSMO reuse model

VII. CONCLUSION AND RECOMMENDATIONS
In this paper, we have defined a reuse extension model

for the COSYSMO size drivers. We presented an industry
definition, as well as an organizational implementation as
the practical validation and implementation example of the

reuse model. We discussed the approach applied to this
development and the method used for deriving the reuse
weights. We also presented the updated COSYSMO size
driver definitions that are consistent and compatible with
the reuse extension.

To implement this extension for the operational use, an
organization can directly apply the method presented in this
paper. It may consider further instantiating the definitions
to establish more concrete and defined boundaries that are
tailored to the business model, product lines, and
engineering process of the respective organizations.
Organizations may also find it necessary to add additional
reuse categories. If so, it is recommended that the original
reuse categories be preserved rather than changing the
established categories.

The weights for reuse, once defined, should be
consistently applied across all data points and over time,
between calibration data and new estimates. They should
not be changed for a single estimate and calibration point.
Any change to these definitions may require recollection of
all the calibration data points, and change to the derived
weights may require recalculation of all the system sizes.
This is required for the necessary level of consistency
between programs and between calibrations and new
estimates. In other words, this is to ensure that consistency
of requirements is realized across programs and system size
is measured with the same scale and counting rules.

As a community of systems engineers interested in cost
estimation, we cannot dictate each individual organization’s
extension of the reuse model, but we should, however,
agree on a set of values for reuse weights. This is desirable
to ensure consistent understanding of estimate system size
and better communicate basis of estimates. This will be a
continuing effort in the refinement of the reuse approach
which will involve feedback from key stakeholders from
leading organizations.

The initial version of COSYSMO has established a
frontier for systems engineering cost estimation. However,
as with any other methodology in its early stage, it requires
continuous improvement so that it can gain the level of
maturity required by operational use and potentially as a
new industry standard. The authors are also engaged in
other enhancement efforts to further improve the fidelity of
the model. One of these areas is the cost drivers or the
effort multipliers used in the model to scale the estimate
effort based on the system size. Another is the extension of
the reuse concepts to other systems engineering artifacts
such as knowledge [16, 17], documentation, and test
procedures. We are following a similar strategy in
combining expert opinion and historical data to develop the
most realistic and accurate model possible and will report
the progress of these activities in the near future.

DRAFT - UNDER REVIEW

10

ACKNOWLEDGMENT
The authors wish to thank other collaborators that have

provided valuable insight and helpful discussions on this
work. Garry Roedler and John Gaffney of Lockheed
Martin, John Rieff of Raytheon, Dan Ligett of Softstar
Systems, and Barry Boehm of USC were influential in the
direction and outcome of this work.

REFERENCES
[1] A. Sage, “Systems Engineering and Systems Management for

Reengineering”, Journal of Systems and Software, vol. 30, no. 1,
1995.

[2] J. Poulin, J. Caruso, D. Hancock, “The business case for software
reuse”, IBM Systems Journal, vol. 32, no. 4, 1993.

[3] D. Garlan, R. Allen, J. Ockerbloom, “Architectural Mismatch or Why
it’s hard to build systems out of existing parts”, 17th International
Conference on Software Engineering, Seattle, WA, April 1995.

[4] R. Valerdi, The Constructive Systems Engineering Cost Estimation
Model (COSYSMO): Quantifying the Costs of Systems Engineering
Effort in Complex Systems, VDM Verlag, 2008.

[5] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark, E. Horowitz,
R. Madachy, D. Reifer and B. Steece, Software Cost Estimation with
COCOMO II, Upper Saddle River, NJ, Prentice-Hall, 2000.

[6] R. Valerdi, J. Rieff, G. Roedler, M. Wheaton and G. Wang, “Lessons
Learned from Industrial Validation of COSYSMO,” 17th INCOSE
Symposium, San Diego, CA, June 2007.

[7] J. Reiff, J. Gaffney and G. Roedler, “2007: The Breakout Year for
COSYSMO,” Practical System and Software Measurement Users
Group Conference, Golden, CO, 2007.

[8] R. Valerdi, J. Gaffney, G. Roedler and J. Rieff, “Extensions of
COSYSMO to Represent Reuse,” 21st International COCOMO
Forum, Los Angeles, CA, October 2006.

[9] G. Wang, R. Valerdi, R., Ankrum, A., Millar, C. and Roedler, G.,
“COSYSMO Reuse Extension,” 18th INCOSE Symposium, Utrecht,
The Netherlands, June 2008.

[10] “Special Issue on Software Reusability,” IEEE Trans. Software Eng.
T. Biggerstaff and A. Perlis, eds., vol. 10, no. 5, Sept. 1984.

[11] H. Mili, F. Mili, A. Mili, Reusing Software: Issues and Research
Directions, IEEE Trans. Software Eng., vol. 21, no. 6, pp. 528-562,
June 1995.

[12] “Enabling Reuse-Based Software Development of Large-Scale
Systems.” IEEE Trans. Software Eng. R. Selby, vol. 31, no. 6, June
2005.

[13] ISO/IEC. ISO/IEC 15288:2002(E) Systems Engineering - System Life
Cycle Processes, 2002.

[14] ANSI/EIA. ANSI/EIA-632-1988 Processes for Engineering a System,
1999.

[15] R. Valerdi, M. Wheaton, “ANSI/EIA 632 As a Standard WBS for
COSYSMO,” AIAA 1st Infotech@Aerospace Conference, Arlington,
VA, September 2005.

[16] C. Huang, Explication and sharing of design knowledge through a
novel product design approach, IEEE Trans. Sys., Man and
Cybernetics, Part C: Applications and Reviews, vol. 36, pp. 426-438,
2006.

[17] A. Satyadas, Knowledge management tutorial: an editorial overview,
IEEE Trans, Sys., Man and Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 31, pp. 429-437, 2001.

BIOGRAPHIES
Gan Wang (BS’81-MS’87–PhD’91–MBA’02) is a Principal Investigator
for system-of-systems engineering and integration strategic initiatives at
BAE Systems. He obtained his BS in Electrical Engineering from Harbin
Institute of Technology, his MS in Electrical Engineering from George
Mason University, his PhD in Electrical Engineering from the University
of Virginia, and his MBA from the University of Maryland.

He has been engaged in the research and development of decision
support methods and life cycle cost modeling and practice for systems
engineering and enterprise-level, system-of-systems engineering and
management. Prior to joining BAE Systems, he spent many years
developing real-time geospatial data visualization applications for mission
planning and rehearsal, battlefield command and control (C2), flight
simulation and aircrew training systems. He has over 20 years of
experience in systems engineering, software development, research and
development, and engineering management involving complex, software-
intensive systems.

Dr. Wang is a member of IEEE, INCOSE and PMI.

Ricardo Valerdi (BS’99-MS’02-PhD’05) is a Research Associate at the
Lean Advancement Initiative at Massachusetts Institute of Technology and
a founding member of the Systems Engineering Advancement Research
Initiative. He is also a Visiting Associate at the Center for Systems and
Software Engineering at University of Southern California (USC) and a
Senior Member of the Technical Staff at the Aerospace Corporation in the
Economic & Market Analysis Center. Formerly he worked as a Systems
Engineer at Motorola and at General Instrument Corporation.

He earned his BS in Electrical Engineering from the University of San
Diego, MS and PhD in Industrial & Systems Engineering from USC.

Dr. Valerdi became a member of IEEE in 1995 and is a member of
INCOSE and serves on its Board of Directors.

Jared Fortune (BS’05-MS’06) is a Doctoral Student at the University of
Southern California in the Industrial and Systems Engineering Department.
His research topic is on reuse considerations in architecture tradeoffs in
space systems. He is also an Advanced Degree Fellow at the Aerospace
Corporation in the Economic & Market Analysis Center, where he has
worked for the past three years.

He earned his BS and MS from the University of Southern California in
Industrial and Systems Engineering as well as a Minor in Business.

Mr. Fortune is a member of IEEE and INCOSE.

