
6 May 2011 Version 3.0

 1

DATA ITEM DESCRIPTION
MAINTENANCE DATA COLLECTION REPORTING

1. Title: Software Maintenance Data Reporting

2. Use/Relationship: This Data Item Description (DID) identifies and describes the data being
collected to build a software operations, maintenance and sustainment cost and quality database. This
Software Maintenance Data Reporting form is not a management or measurement report. It is not
intended for tracking progress, nor does it intend to collect financial information. Rather, its purpose is to
collect empirical data during the software operations and maintenance phase of the weapons systems life
cycle (after Milestone C) for use in calibrating models and developing software benchmarks. These data
will also be used to first characterize the Department of Defense’s software inventory and then
substantiate budgets used for future maintenance appropriations.

3. Timing: Because we are collecting both estimates and actuals for many of the measures identified,
the best time to capture data is at the start and end of a cycle. For example, software size measured in
source lines of code would be captured at the beginning of a release with the estimated and the end with a
measurement of the actuals when the release is delivered to the field. At the beginning of the cycle,
software size estimates will be collected using estimate work sheets as their primary source. At the end of
the cycle, a code counter such as the University of Southern California’s (USC) Unified Code Counter
(UCC) will be run to measure the actual size of the software and the number of source lines of code
added, deleted, changed and reused from release to release and version to version (using the USC tool’s
differential counting capabilities).

Additionally, data will be captured on an annual basis when releases are multi-year because that is
how budgets are allocated within the POM (Program Objectives Memorandum). For multi-year projects,
the software estimate data must therefore be collected at the start of the cycle, updated with a cost and
schedule-to-complete the start of the next fiscal year, and finalized with actual costs and schedule
information when the release or version is delivered to the field.

4. Multi-Level Approach: Maintenance data will be collected using a three level scheme. At the
highest level, software data will be captured at the program level to understand and characterize the
program being studied. At the mid-tier, software release information will be collected at the release level
to help understand the workload the Department of Defense (DOD) must budget for now and in the
future. At the lowest level, data will be collected at the component level to determine what factors drive
the cost of software maintenance, when and why. Data at all three levels are needed to satisfy the goals of
this Department which are aimed at improving the way software is managed during maintenance.

Data that are being collected as part of this effort will be used for two purposes. First, data collection
results will be used to help quantify how large a software inventory the DOD maintains. This information
will be used by decision-makers to formulate policy relative to software operations, maintenance and
support for weapons systems. Additionally, the data being collected will also be used by the U. S. Army
to help estimate and defend software operations, maintenance and sustainment budgets that will become
part of the POM. Because the information needs for these two efforts differ, more data than expected
may be required to characterize a program and its software deliverables. The team, however, has made
every effort to minimize the requirements on programs as they understand that data collection can become
an arduous burden for them especially when they are not paid to perform the task.

5. Program Level Information Needs - Context Data (Mandatory). Context data at the program level
is needed to identify the following contact, application type and top-level release information using our
software maintenance data collection questionnaire. All of these data items are identified as
“Mandatory” at this level because they represent the minimum set of data that we believe are needed in
order for us to realize the goals of this effort.

6 May 2011 Version 3.0

 2

a. Contact Information – the person that we can contact to clarify information by name,
organization, address, phone and email information and date the information was submitted.

b. Submitter Role – the role of the person submitting the data.

c. Program Information – the year the weapons system program was transitioned to maintenance
and number of fielded versions.

d. Application Type – the type of weapons system application as defined using operating
environment and application domain.

e. Fielded Program Version Information – location, workforce size and composition, POM
budgets, sources of funding, other contracted expenditures and size information for each major
software subsystem and/or deliverable software configuration item.

6. Release Level (Mandatory). Release data for the identified weapons system program is needed to
identify the program’s software’s characteristics and history. Again, all of the data items are identified as
“Mandatory” at this level because they represent what we need to understand and improve how
maintenance efforts are managed and budgeted.

a. Program Name – the name of program.
b. Project Information – basic information about the project, its host/target platforms,

programming languages, number of distinct end users, and number of user locations.
c. Release Type – whether the software release includes major new capabilities, upgraded

capabilities or patches or some combination of all the above.

d. Release Process – the process paradigm used to generate the software release being described.

e. Release History- a summary of the number and types of software releases fielded by the
weapons system program during the past few years.

f. System Integration Environment – information about the integration and test laboratory and
associated test equipment employed to generate the software release.

g. Activities Included – the activities performed as part of the software maintenance, sustaining
engineering, acquisition management and independent testing activities performed during the
software release cycle.

h. Activity Percentages – the percentage of the total effort that each of these activities and their
subtasks consume (should add up to 100 percent).

i. Labor Categories Included in Maintenance Effort – the labor categories for the team that
performs the software maintenance activities identified as part of the software release cycle.

j. Labor Categories Included in Sustaining Engineering Effort – the labor categories for the
team that performs the sustaining engineering activities.

k. Stage of Maintenance – the stage of maintenance cycle that the weapons system program is
currently in.

l. In-House or Contracted – whether software maintenance is performed by in-house, contractor
or a combined team.

m. Size of Maintenance Team – the average and peak size of the software maintenance team in
either FTE (Full Time Equivalent heads) or contract dollars ($).

n. Metrics and Measures – the metrics that the project collects and uses to provide insights into
their progress, quality and productivity.

o. Software Defect Backlog – the size of the software problem report backlog in terms of open
trouble reports by defect category. Defects are cataloged in terms of five defect categories each
of which is defined in the most current version of the “Glossary of Software Operations,
Maintenance and Sustainment Terms” which is available from the authors and is available on our
web site.

6 May 2011 Version 3.0

 3

7. Component Level: Component data for the identified software release(s) is needed to identify those
factors which drive the cost of maintenance. Again, those data items identified as “Mandatory” represent
the minimum data set to be collected using our questionnaires. Such data includes both estimated and
actual values. It represented the minimum set of data that we need to perform our analyses and generate
our findings relative to software maintenance cost, productivity and quality.

a. Year of Development – start and stop dates for the software release being described.
b. Size – Requirements (Mandatory) - Requirements are established for the project, release or

version from approved Software Change Requests (SCRs). Software requirements are defined at
a detailed level assuming the DOORS tool by IBM/Rational is used for their elicitation and
management. Such requirements are typically expressed in a complete sentence containing both a
subject and predicate. These sentences need to consistently use the verb “shall” or “will” or
“must” to show the requirement’s mandatory nature. The whole requirement specifies a desired
end goal or result and contains success criterion or other measurable indication of quality. The
specification should be consistent in the manner in which it states requirements and complete. In
addition, the source of each requirement should be identified (i.e., by mapping to system
specification or other source document) and its testability shall be verified.

This set of data is being collected to substantiate budgets for software enhancements including
funds needed for software maintenance, sustaining engineering and product support during
operations. The data to be reported in this category includes:
 Name – the name of the project, release or version being described.
 Added – The number of new requirements added to the current version or release.

 Deleted – The number of existing requirements deleted from the previous version or release.

 Changed – The number of existing requirements modified for the current version or release.

 Deferred – The number of new and/or deleted requirements deferred from the new version or
release solely due to funding constraints.

 Total Number of Requirements – The actual number of requirements in the new version or
release when it is delivered for operational use.

Estimate data need to be collected at the start of the cycle, updated at the start of the fiscal year (if
multi-year) and finalized with actuals at the end of the cycle.

c. Size – Source Lines of Code (Mandatory)
The size of the software counted in non-blank, non-comment logical source lines of code
(SLOC). Counting conventions for logical source lines vary by language. However, counters
exist and should be used when available to count source lines for the language in question using
conventions established by the Software Engineering Institute (SEI) in the following referenced
standard as modified to count deleted source lines of code:
 Robert E. Park, Software Size Measurement: A Framework for Counting Source

Statements, Technical Report CMU/SEI-92-TR-020, 1992.

Such counters include the USC Unified Code Counting (UCC) tool which can be downloaded
free from the following web site: http://sunset.usc.edu.

Should other measures of size like function points or object points be used, they must be
converted to source lines of code using industry accepted standards like the Capers Jones function
point to source lines of code conversion tables in:

 Software Productivity Research, SPR Programming Language Table, Version PLT2007c,
28 December 2007.

This set of data is being collected to define the size of the release so it can be estimated using
calibrated software cost models. The data to be reported in this category includes:
 Name – the name of the project, release or version being described.

6 May 2011 Version 3.0

 4

 New (added) – The number of new source lines of code added to the new version or release.

 Reused (old) – The number of existing source lines of code that were included in the new
version or release. These lines are not changed in any way.

 Modified (changed) – The number of existing source lines of code that were changed and
included in the new version or release. These lines can include design modified, code
modified and/or integration modified elements.

 Deleted – The number of existing source lines of code that were deleted from the previous
version or release.

 Auto-generated – The number of auto-generated source lines of code added to the new
version or release. Auto-generated code is produced using specialized tools at a pace far
exceeding manual development.

Estimate data need to be collected at the start of the cycle, updated at the start of the fiscal year (if
multi-year) and finalized with actuals at the end of the cycle.

If other size measures like function or feature points are being used, identify how they convert
into SLOCs in terms of conversion ratios.

If a counting tool is being used, identify it by name and version.

Provide the information requested on the number of COTS/GOTS packages being used in the
deliverable and their characteristics.

d. Schedule (Mandatory) - The schedule represents the calendar time spent to generate the
software version or release from its start to its actual delivery date. The set of data being
collected is being collected to calibrate software cost models so that their predictions are as
accurate as possible. The software effort starts when allocated software requirements are
provided to the software team by the systems engineering organization. The software effort ends
when the software is delivered to systems engineering for integration and test typically in some
System Integration Lab or facility. The data to be reported in this category includes:
 Name – the name of the project, release or version being described.

 Estimated Begin Date – The estimated calendar date that work on the new version or release
should have begun.

 Estimated End Date – The estimated calendar date that the new version or release should
have been delivered to systems engineering for integration and test.

 Actual Begin Date – The actual calendar date that work on the new version or release began.
This may differ from the estimated date due to any number of reasons.

 Actual End Date – The actual calendar date that the new version or release was delivered to
systems engineering for integration and test.

Define the event that starts and ends the life cycle encompassed by the schedule.

Estimate data need to be collected at the start of the cycle, updated at the start of the fiscal year (if
multi-year) and finalized with actuals at the end of the cycle.

e. Effort (Mandatory) [OPS-29 Category: Organic Labor System Infrastructure] - The effort
captured is that required to manage and maintain operational capability of systems in the field.
The effort represents the number of staff-hours spent during the time from when allocated
software requirements are provided for the version to when the software completes integration
and test. The number of hours includes all directly chargeable hours to the software project
including all of those expended by management, development, test and support personnel
involved in getting the software product delivered. The data to be reported in this category
includes:
 Name – the name of the project, release or version being described.

6 May 2011 Version 3.0

 5

 Estimated Effort (staff-hours or number FTE (Full Time Equivalents) – The estimated
effort in staff-hours or number of Full Time Equivalents (FTE) for the new version or release
provided prior to the work begins.

 Actual Effort (staff-hours or number FTE) – The actual effort expended in staff-hours or
FTE for the new version or release provided when the work was completed.

Provide the conventions used for effort in terms of staff months, hours or FTE.

Estimate data need to be collected at the start of the cycle, updated at the start of the fiscal
year (if multi-year) and finalized with actuals at the end of the cycle.

f. Cost (Mandatory) - The cost represents the actual year dollars ($) spent during the time from
when allocated software requirements are provided to when the software release is replaced by a
new release or the system is retired. The number of dollars ($) differs from effort as it includes
all those expended on the project including those spent on licenses, travel, and other applicable
costs like Certification and Accreditations (C&As), IAVA (Information Assurance &
Vulnerability Assessment), sustaining engineering and field support. The data to be reported in
this category includes:

 Name – the name of the project, release or version being described.

 Labor Costs [OPS-29 Category: Organic Labor System Infrastructure]

o Estimated Labor Costs ($) – The estimated labor costs in $ for the new version or
release prior to the work on it being started. Reflects the cost of the estimated effort
identified above in either labor hours or FTE.

o Actual Labor Costs ($) – The actual labor costs expended in $ for the new version or
release when the work on it was completed. Reflects the cost of the actual effort
identified above in either labor hours or FTE.

 License Costs [OPS-29 Category: Licenses]
o Estimated License Costs ($) – The estimated license costs in $ for the new version or

release prior to the work on the new version it being started. Includes both
developmental and run-time licenses, as appropriate.

o Actual License Costs ($) – The actual license costs expended in $ for the new version or
release when the work on it was completed. Includes both developmental and run-time
licenses, as appropriate.

 Other Direct Costs (including Travel)
o Estimated Other Direct Costs ($) – The estimated other direct costs (including travel)

in $ for the new version or release prior to the work on it being started. Includes all travel
including field support and expendables.

o Actual Other Direct Costs ($) – The actual other direct costs (including travel)
expended in $ for the new version or release when the work on it was completed.
Includes all travel including field support and expendables.

 Facility Costs [OPS-29 Category: Sys Open Door]
o Estimated Facility Costs ($) – The estimated costs in $ for equipment, facilities and

their maintenance in $ needed for sustain, test and support of the new version or release
prior to the work on it being started.

o Actual Facility Costs ($) – The actual costs in $ for equipment, facilities and their
maintenance in $ needed to sustain, test and support the new version or release when the
work on it was completed.

 Certification and Accreditation Costs [OPS-29 Category: C&A’s]
o Estimated C&A’s ($) – The estimated costs in $ for conducting Defense Information

Assurance Certification and Accreditation Process (DIACAP) or for flight safety

6 May 2011 Version 3.0

 6

certifications. Includes the costs for analysis and updates/fixes needed to comply with
standards.

o Actual C&A’s ($) – The actual costs in $ for conducting Defense Information Assurance
Certification and Accreditation Process (DIACAP) or for flight safety certifications.
Includes the costs for analysis and updates/fixes needed to comply with standards.

 Information Assurance Vulnerability Assessment Costs [OPS-29 Category: IAVA’s]
o Estimated IAVA ($) – The estimated costs in $ for conducting IAVA. Includes the costs

to patch software to address emerging Information Assurance (IA) and Vulnerability
Alerts/Assessment (VA) requirements.

o Actual IAVA ($) – The actual costs in $ for conducting IAVA. Includes the costs to
patch software to address emerging Information Assurance (IA) and Vulnerability
Alerts/Assessment (VA) requirements.

 Sustaining Engineering Costs (SE)
o Estimated SE ($) – The estimated effort in $ for providing sustaining engineering

support on a release by release basis. Besides performing tasks like network
administration, security, quality assurance, independent testing, and configuration and
distribution management, sustaining engineering provides user handholding, training and
support.

o Actual SE ($) – The actual effort in $ for providing sustaining engineering support on a
release by release basis. Besides performing tasks like network administration, security,
quality assurance, independent testing, and configuration and distribution management,
sustaining engineering provides user handholding, training and support.

 Field Software Engineers Costs [OPS-29 Category: FSEs]
o Estimated FSE ($) – The estimated effort in $ for supporting the system in the field

including expenditures for contracts and contractors required to keep the system
operational (hardware maintenance, etc.). Field support personnel troubleshoot and patch
the system. They are not users or operators of the system.

o Actual FSE ($) – The estimated effort in $ for supporting the system in the field
including expenditures for contracts and contractors required to keep the system
operational (hardware maintenance, etc.). Field support personnel troubleshoot and patch
the system. They are not users or operators of the system.

 Contractual Capability Sets [OPS-29 Category: Cap Sets FY (XX/XX)]
o Estimated Cap Sets ($) – The estimated costs in $ for acquiring a capability set for the

fiscal years (XX/XX) that cover the following software releases (Release XXX to XXX).

o Actual Cap Sets ($) – The actual costs expended in $ for acquiring a capability set for
the fiscal years (XX/XX) that cover the following software releases (Release XXX to
XXX).

The contractual capability set includes the following costs:
 Troubleshoot/correct issues

 Cyclic release of new/revised versions

 Respond to new threats or requirements

 Maintain interoperability with other changing systems

 Accommodate new weapons, systems, and/or munitions

 Increase efficiency/effectiveness

 Support new doctrine/tactics

 Ensure compatibility with replacement COTS packages

 Satisfy policy mandates

6 May 2011 Version 3.0

 7

 Address affordability concerns

Each new capability set must be mapped to requirements, both functional and performance.
External interfaces must be specified via an Interface Control Document (ICD). In order to
assess reasonableness of cost, there also must be a detailed size estimate in SLOC provided
along with effort estimates mapped to WBS work packages. Should there be an affordability
goal; capabilities should be mapped to Total Ownership Costs (TOC).

 System Mission Capability [OPS-29 Category: System Mission Cap]
o Estimated System Mission Cap ($) – The estimated costs in $ for acquiring system

mission capabilities that support evolving system requirements.

o Actual System Mission Cap ($) – The actual costs expended in $ for acquiring system
mission capabilities that support evolving mission requirements.

The acquired capabilities include the following costs:
 Troubleshoot/correct issues

 Cyclic release of new/revised versions

 Respond to new threats or requirements

 Maintain interoperability with other changing systems

 Accommodate new weapons, systems, and/or munitions

 Increase efficiency/effectiveness

 Support new doctrine/tactics

 Ensure compatibility with replacement COTS (Commercial Off-The-Shelf) packages

 Satisfy policy mandates

 Address affordability concerns

Each set of mission capabilities must be mapped to requirements, both functional and
performance. External interfaces must be specified via an Interface Control Document
(ICD). In order to assess reasonableness of cost, there also must be a detailed size estimate in
SLOC provided along with effort estimates mapped to Work Breakdown Structure (WBS)
software work packages. Should there be an affordability goal; capabilities should be
mapped to TOC at least across the POM life cycle for the project.

g. Sources of Funds (Mandatory) – This entry is used to identify which types of budgets cover the
costs identified in the previous section. For each cost item, identify the type of budget (R&D
(Research and Development), O&M (Operations and Maintenance), Production, FMS (Foreign
Military Sales), other) and allocation amount in $ that you have been authorized by Fiscal Year
(FY). Budgets should be expressed in current budget year dollars ($). Whenever possible, they
should correlate directly to actual expenditures (previous year), current year and out-year POM
budgets, as applicable.
 Name – the name of the project, release or version being described.

 Source of Funds – For the project, release or version, identify the type of funds (R&D,
O&M, Production, FMS and other) and amount of $ allocated for each of the following cost
categories for the previous, current and next two fiscal years (FY):
o Labor costs

o License costs

o Other direct costs (including travel)

o Facilities costs

o C&A costs

o IAVA costs

6 May 2011 Version 3.0

 8

o Field software engineers cost

o Contractual capability sets

o Contractual system mission capabilities

h. Budgets (Mandatory) – Provide information about how your budgets are allocated and whether
or not they are sufficient to satisfy expectations.

i. Defects (Mandatory) - The number of defects is determined by the tallying the number of
Software Problem Reports (SPR) as they are entered into the problem reporting system. A defect
is an error, flaw, mistake or fault in a software program that causes it to produce either incorrect
or unexpected results, or causes it to behave in untended ways. Defects are sometimes separated
by phase in which they are discovered in an attempt to determine how many escape detection in-
phase and out-of-phase.

This set of data is being collected to define the relative quality of the release so it can be
estimated using calibrated defect models. The data to be reported in this category includes:
 Name – the name of the project, release or version being described.

 Number of Defects – The actual number of defects in this version or release separated into
the following five categories:
o Category 1 Defects (Catastrophic) – the number of catastrophic defects found and fixed

in this release. Catastrophic defects are those that prevent the accomplishment of an
operational or mission-essential capability and for which no work-around solution is
known. In addition, catastrophic defects include all system/software lockups and those
defects that jeopardize safety, security, or other requirement designated “critical.”

o Category 2 Defects (Critical) – the number of critical defects found and fixed in this
release. Critical defects are those that adversely affect the accomplishment of an
operational or mission-essential capability and for which a work-around solution is not
known. In addition, such defects include those that adversely affect technical, cost, or
schedule risks to the project or to life cycle support of the system and for which no work-
around solution is known.

o Category 3 Defects (Serious) – the number of serious defects found and fixed in this
release. Serious defects are those that adversely affect the accomplishment of an
operational and/or mission-essential capability, but for which a work-around solution is
known.

o Category 4 Defects (Annoyance) – the number of annoyance defects found and fixed in
the release. Annoyance defects are those that typically result in user/operator
inconvenience, but do not affect any required operational or mission-essential capability.

o Category 5 Defects (Minimal) – the number of defects that both have minimal impacts
and do not appear in any other category found and fixed in this release. They may be
provided for informational purposes.

 Defect Information - Information supplied for each defect in each of these categories via a
spreadsheet includes:
o Number of latent defects; i.e., those existing prior to this release

o Number of latent defects planned to be fixed in this release

o Number of latent defects actually fixed in this release

o Number of new defects found in this release

o Number of new defects fixed in this release

o Number of latent and new defects deferred to the next release

6 May 2011 Version 3.0

 9

Provide information about whether you keep track of age of defects, defect backlogs and whether
you use a software reliability model to predict number of defects expected and, if so, which one.

Defect data need to be collected at the start of the cycle, updated at the start of the fiscal year (if
multi-year) and finalized with actuals at the end of the cycle.

j. Latent Defect Information (Mandatory) – Latent defects are hidden flaws, weaknesses or
imperfections that may cause failure or malfunction that is not discoverable by reasonable
inspection until after delivery of a software release to the field. Information requested about latent
defects by year include the follow:
 Number of latent defects existing prior to the release found during maintenance.

 Number of latent defects fixed in this release.

 Number of new defects (those inserted by maintenance actions) found in this release.

 Number of these defects that were fixed in this release.

 Total number of latent and new defects found during maintenance in this release.

 Total number of latent and new defects deferred to the next release.

Defect data need to be collected at the start of the cycle, updated at the start of the fiscal year (if
multi-year) and finalized with actuals at the end of the cycle.

k. Earned Value - Earned value is a project management technique used to measure progress in an
objective manner. It combines measurement of scope, schedule and cost into an integrated
framework for determining status and assessing progress. The data to be reported in this category
includes:
 Name – the name of the project, release or version being described.

 Budgeted Cost of Work Performed (BCWP) – the budgeted cost of the work actually
completed.

 Actual Cost of Work Performed (ACWP) – the actual cost of the work completed taken
from the financial records.

 Budgeted Cost of Work Scheduled (BCWS) – the budgeted cost of the work scheduled but
not performed as of yet.

 To Completion Performance Index (TCPI) - TCPI indicates the future required cost
efficiency needed to achieve either a target BAC (Budget at Complete) or EAC (Estimate at
Completion).

 TCPI (EAC) – TCPI calculated based on EAC.

 Budget At Completion (BAC) – the current budget allocated to complete the work.

 Estimate At Completion (EAC) – the current estimated cost to complete the work.

If you do not use earned value to track progress, identify the approach you use in its stead.

l. Test Effort - The effort represents the number of staff-hours spent to FQT the software. It does
not include staff-hours for unit testing. However, it does include staff-hours needed to conduct
dry runs and prepare automation scripts. The number of hours includes all directly chargeable
hours to the software project including all of those expended by management, test and support
personnel involved in getting the software product delivered. The data to be reported in this
category includes:
 Name – the name of the project, release or version being described.

 Number of Test Cases – The actual number of test cases developed for the new version or
release separated into the following categories:
o Dry Run – the actual number of test cases that were developed for the dry-run of the new

version or release.

6 May 2011 Version 3.0

 10

o Dry-Run Regression – the actual number of automation scripts that were developed for
the dry-run regression tests of the new version or release.

o Formal Qualification Test (FQT) – the actual number of test cases that were developed
for the FQT of the new version or release.

o FQT Regression – the actual number of automation scripts that were developed for the
FQT regression tests of the new version or release.

 Test Case Effort (staff-hours) – The actual effort expended in staff-hours for developing
test cases for the new version or release separated into the following categories:
o Dry Run – the actual effort expended in staff-hours to develop test cases for the dry-run

of the new version or release.

o Dry-Run Regression – the actual effort expended in staff-hours to develop scripts for the
dry-run regression tests of the new version or release.

o Formal Qualification Test (FQT) – the actual effort expended in staff-hours to develop
test cases for the FQT of the new version or release.

o FQT Regression – the actual effort expended in staff-hours to develop scripts for the
FQT regression tests of the new version or release.

 Number of Tests Run – The actual number of tests run for the new version or release
separated into the following categories:
o Dry Run – the actual number of test cases that were run during the dry-run of the new

version or release.

o Dry-Run Regression – the actual number of automation scripts that were run during the
dry-run regression tests of the new version or release.

o Formal Qualification Test (FQT) – the actual number of test cases that were run during
the FQT of the new version or release.

o FQT Regression – the actual number of automation scripts that were run during the FQT
regression tests of the new version or release.

 Test Conduct Effort (staff-hours) – The actual effort expended in staff-hours for
conducting the testing of the new version or release separated into the following categories:
o Dry Run – the actual effort expended in staff-hours to run the test cases developed

during the dry-run. of the new version or release

o Dry-Run Regression – the actual effort expended in staff-hours to run the scripts
developed during the dry-run regression tests of the new version or release.

o Formal Qualification Test (FQT) – the actual effort expended in staff-hours to run the
test cases developed for the FQT of the new version or release.

o FQT Regression – the actual effort expended in staff-hours to run the scripts developed
for the FQT regression tests of the new version or release.

o Procedures – the actual effort expended in staff-hours to develop and run specialized test
procedures developed during the FQT of the new version or release. For example, the
effort needed to run test procedures developed for flight safety certification might be
included in this category.

 Actual Test Cost ($) – The actual test cost expended in $ for the new version or release
separated into the following categories:
o Dry Run – the actual effort expended in $ to run the test cases developed during the dry-

run of the new version or release.

o Dry-Run Regression – the actual effort expended in $ to run the scripts developed
during the dry-run regression tests of the new version or release.

o Formal Qualification Test (FQT) – the actual effort expended in $ to run the test cases
developed for the FQT of the new version or release.

6 May 2011 Version 3.0

 11

o FQT Regression – the actual effort expended in $ to run the scripts developed for the
FQT regression tests of the new version or release.

o Procedures – the actual effort expended in $ to develop and run specialized test
procedures developed during the FQT of the new version or release.

Test data need to be collected at the start of the cycle, updated at the start of the fiscal year (if
multi-year) and finalized with actuals at the end of the cycle.

5. Software Cost Model Information
 If a software cost model (COCOMO II, SLIM, SEER-SEM, True S, etc.) was used to develop effort
and duration estimates, please provide a copy of the estimate file and basis for estimate for each software
project, version or release. Multiple files are needed, i.e., that containing the initial estimate and another
that updates the drivers to reflect the estimated cost- and schedule-to complete at the end the fiscal year
for multi-year projects and actuals at the end of the effort. As an example, you may have planned to use
experienced people for the job. But, they may have had difficulties finding them because the technology
involved was so old that it has not been taught for years (e.g., developing software using the JOVIAL
programming language and its integral COMPOOL features). The result is that the initial estimate
assumed applications experience (“APEX” for the COCOMO II cost model) was “High” when in
actuality it was “Low” for the updates. The values for experience should be captured along with an
explanation in each updated file (cost-to-complete and actual). If you do not have these files, please
provide cost driver information like that appearing the following two tables using the guidance on the
model’s web site (http://sunset.usc.edu for COCOMO or http://www.galorath.com for SEER).

a. Cost Model – Identify the cost model used to estimate resources for the release from the list provided
in the questionnaire.

The materials provided in the remainder of this section are for the COCOMO II model. The
following example cost model data is provided for the COCOMO II because its data model is public
domain. Similar data should be provided when other cost models are used along with the size and
additional information called out in this DID. When actuals are provided, please update the estimate
ratings to reflect the most current and not the initial ratings for these parameters.

b. COCOMO II Scale Factors - Rate the following five COCOMO II scale drivers. These are the
factors that influence the exponent of the estimating equation. When in doubt use the nominal
setting. Please provide the two versions of this table that were requested.

Very
Low

Low Nominal High Very
High

Extra
High

Estimate
Rating

Precedentedness Thoroughly un-
precedented

Largely
un-

precedented

Somewhat un-
precedented

Generally
familiar

Largely
familiar

Largely
familiar

Development
Flexibility

Rigorous Occasional
relaxation

Some
relaxation

General
conformity

Some
conformity

Some
conformity

Architecture/
Risk Resolution

Little
20%

Some
40%

Often
60%

Generally
75%

Mostly 90% Mostly
90%

Team
Cohesion

Strongly
adversarial

Occasionally
cooperative

Moderately
cooperative

Largely
cooperative

Highly
cooperative

Highly
cooperative

Process Maturity CMM Level 1
(lower half)

CMM Level 1
(upper half)

CMM
Level 2

CMM Level 3 CMM Level 4 CMM
Level 5

c. COCOMO II Cost Drivers - Rate the following seventeen COCOMO II cost drivers. These factors
are multiplied together to adjust the project cost to factors that have been found to influence over the
effort and duration estimates. When in doubt use the nominal setting. Again, please provide the two
versions of this table that were requested.

6 May 2011 Version 3.0

 12

 Very
Low

Low Nominal High Very
High

Extra
High

Estimate
Rating

Required
Software
Reliability

Slight in-
convenience

Low, easily
recoverable

losses

Moderate, easily
recoverable losses

High financial
loss

Risk to
human life

Data Base
Size

 D/P < 10 10 < D/P < 100 100 < D/P < 1000 D/P > 1000

Product
Complexity

Simple Straight-
forward

Routine, some
math, multi-file

Processing
intense

Interrupt-
driven

Complex real-
time

Required
Reusability

 None Across project Across Program Across
Product

 Line

Across
Multiple

Product Lines

Documentatio
n Match to
Life Cycle
Needs

Many life cycle
needs

uncovered

Some needs
uncovered

Right-sized
to life cycle needs

Excessive
for life cycle

needs

Very
excessive for

life cycle
needs

Execution
Time
Constraints

 > 50% use of
available exec.

time

70% use 85% use 95% use

Main Storage
Constraints

 > 50% use of
available
storage

70% use 85% use 95% use

Platform
Volatility

 Major
- 12 months
Minor
- 1 month

Major
- 6 months
Minor
– 2 weeks

Major
- 2 months
Minor
- 1 week

Major
- 2 weeks
Minor –
- 2 days

Analyst
Capability

15th
percentile

35th percentile 55th
percentile

75th
percentile

90th
percentile

Programmer
Capability

15th
percentile

35th percentile 55th
percentile

75th
percentile

90th
percentile

Personnel
Continuity

48%/year 24%/year 12%/year 6%/year 3%/year

Application
Experience

< 2 months 6 months 1 year 3 years 6 years

Platform
Experience

< 2 months 6 months 1 year 3 years 6 years

Language/To
ol Experience

< 2 months 6 months 1 year 3 years 6 years

Use of
Software
Tools

Edit, code,
debug

Simple front-
end, backend
CASE, little
integration

Basic life cycle
tools, moderate

integration

Strong, mature
tools, moderate

integration

Strong,
mature tools,

well
integrated

with
processes

Site –
Collocation

International Multi-city and
multi-

company

Multi-city and
multi-company

Same city or
metro area

Same
building or
complex

Fully co-
located

Site –
Communica-
tions

Some phone,
mail

Individual
phone, FAX

Narrow-band
email

Wide-band
electronic comm.

Wideband
electronic

comm., some
video conf.

Inter-active
multi-media

Required
Development
Schedule

75% of
nominal

85% of
nominal

100% of nominal 130% of nominal 160% of
nominal

d. Comments – Attach any additional explanatory materials to the questionnaire and submit it

when completed to the identified sources.

6 May 2011 Version 3.0

 13

Acronyms
The following acronyms have been used within this document:

ACWP Actual Cost of Work Performed
APEX Applications Experience (cost driver in COCOMO II model)
BAC Budget at Completion
BCWP Budgeted Cost of Work Performed
BCWS Budgeted Cost of Work Scheduled
C&A Certification and Accreditation
CM Configuration Management
COTS Commercial Off-The-Shelf
DID Data Item Description
DOD Department of Defense
EAC Estimate at Completion
FMS Foreign Military Sales
FQT Formal Qualification Test
FSE Field Software Engineers
FTE Full Time Equivalent
FY Fiscal Year
IAVA Information Assurance Vulnerability Assessment
IBM International Business Machines
ICD Interface Control Document
O&M Operations & Maintenance
PC Personal Computer
POM Program Objectives Memorandum
QA Quality Assurance
R&D Research and Development
SCR Software Change Request
SE Sustaining Engineering
SLOC Source Lines of Code
SPR Software Problem Report
TCPI To-Completion Performance Index
TOC Total Ownership Costs
UCC Unified Code Counter
USC University of Southern California
WBS Work Breakdown Structure

