BUILDING SECURITY IN

Software Assurance:

Measurable Security for
FISMA, IAVA, and PPP
Reporting Requirements
and Criteria

Focusing on Program Protection Plans

August 1, 2012

Joe Jarzombek, PMP, CSSLP

Director for Software Assurance
National Cyber Security Division

Measurable Security — FISMA, IAVA, and
PPPs Reporting Requirements and Criteria

» Driven by challenges with software putting several missions at
risk from a security perspective and last year's NDAA Section
932 "Strategy on Computer Software Assurance" the DoD now
seems to be serious about mitigating exploitable software
before it is used as an attack vector to breach military
enterprises or compromise a weapon system.

» Measurement is needed to provide software assurance: "the
level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or accidentally
Inserted at anytime during its lifecycle, and that the software
functions in the intended manner."

@ Homeland

&

&

“%2’ Security

What Are We Protecting?

Program Protection Planning

DODI 5000.02 Update

Technology

Components

Information

What: Leading-edge research and technology

Who Ildentifies: Technologists, System
Engineers

ID Process: CPI Identification
Threat Assessment: Foreign collection threat

informed by Intelligence and
Counterintelligence assessments

Countermeasures: AT, Classification, Export
Controls, Security, Foreign Disclosure, and ClI
activities

Focus: “Keep secret stuff in”
by protecting any form of technology

What: Mission-critical elements and
components

Who Ildentifies: System Engineers, Logisticians

What: Information about applications,
processes, capabilities and end-items

Who Ildentifies: All

ID Process: Criticality Analysis

Threat Assessment: DIA SCRM TAC

Countermeasures: SCRM, SSE, Anti- \
counterfeits, software assurance, Trusted
Foundry, etc.

Focus: “Keep malicious stuff out”
by protecting key mission components

_J

ID Process: CPlidentification, criticality
analysis, and classification guidance

Threat Assessment: Foreign collection threat
informed by Intelligence and
Counterintelligence assessments

Countermeasures: Information Assurance,
Classification, Export Controls, Security, etc.

Focus: “Keep critical information from getting
out” by protecting data

Protecting Warfighting Capability Throughout the Lifecycle

Note: Program Protection Planning Includes DoDI 8500 series

Comprehensive Program Protection
5/1/2012 | Page 3

Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1841 applies.

Today Everything’s Connected

Your System is

attackable. .. B

by
- 4 Y v
Ve |
w ' ’,
(.Q. "
"}{u K k.

'
Y
DR 3y Y b/)
(, “ "Y‘ L - t “‘Y"’A -_/,5
\/Y} X ? ii.‘ “,. | B
r | e -‘l‘ I
" - f | v
. A | |
N o Aok Joay
e Lo g ¥
\ y I\: s
! . '_. \ , ‘ '-\5.'
> A) A
L) . ALY
o ."- §/~“#,’{ N
o ‘)% - v v N
e Y . - J
e B LA 3
y 'w"',‘ L X A
-y S od {
.. " ',‘."-“/ ol ¢

' 4 When this Other System gets subverted . ‘ip
Seconty’ through an un-patched vulnerability, a mis- ,,:}“»#?/ >
Measurable: configuration, or an application weakness... ~ * .7 ©

Buffer Overflow
(CWE-120)
Exploit

(CAPEC-123)

| SOL
/| (CWE-89)

/| Exploit

| (CAPEC-66)

-~ .

.

future Zero-Day Attacks

Security Is a Requisite Quality Attribute:
Vulnerable Software Enables Exploitation

= Rather than attempt to break or defeat
network or system security, hackers are
opting to target application software to
circumvent security controls.

0 75% of hacks occurred at application 20 o i
7 apphcattons

evel ith ‘exploitabl
— “90% of software attacks were aimed at %Ineer);%ﬁlltlg 9

application Iayer” (Gartner & Symantec, June 2006) & WeakneSS.- S
O most exploitable software vulnerabilities S | B %
are attributable to non-secure coding
practices (and not identified in testing).

= Functional correctness must be exhibited
even when software is subjected to

abnormal and hostile conditions

In an era riddled with asymmetric cyber attacks, claims about system reliability,
integrity & safety must include provisions for built-in security of the enabling software.

- Homeland
&: Security

Many people responsible for protecting
most critical infrastructure facilities have
felt comfortable about security of their
systems.

— Facilities rely on industrial control

systems (ICS) -- custom-built suites
of systems that control essential

mechanical functions of power grids,

processing plants, etc -- usually not
connected to the Internet, also
known as "air-gapped.”

Many industry owners, operators
and regulators believed that this

security model provided an infallible,

invulnerable barrier to malicious
cyber attacks from criminals and
advanced persistent threat (APT)
adversaries.

Software Security Assurance: Not just a good idea

National Defense Authorization
Act (NDAA) -- which included a
focus on software security (in
Section 932, Strategy on
Computer Software Assurance)
-- serves as first cybersecurity
law of 2011 and requires the
U.S. Dept of Defense to
develop a strategy for ensuring
the security of software
applications.

Software Security Assurance, a
set of practices for ensuring
proactive application security,
Is key to making applications
compliant with this new law.

“How Stuxnet Demonstrates That Software Assurance Equals Mission Assurance:
The rules of the game have changed,” by Rob Roy, Federal CTO of Fortify, an HP Company

Department of Defense (DoD)
Software Assurance Definition

Software Assurance (SwA) is the level of confidence that software
functions as intended and is free of vulnerabilities, either
Intentionally or unintentionally designed or inserted as part of the
software throughout the life cycle.*

From CNSS Instruction 4009 (26APR2010), strengthened to address DoD’s required roles and
responsibilities across the Acquisition Life Cycle.

CNSS Instruction No. 4009, "National Information Assurance Glossary,"
Revised 2006, defines Software Assurance as: "the level of confidence
that software is free from vulnerabilities, either intentionally designed
into the software or accidentally inserted at anytime during its lifecycle,
and that the software functions in the intended manner".

;’/ffg?fgapg?‘f;“on Process Disstritbution Statement A — Cleared for puiblic release by OSR on @228920022 SR Case # 12-5-1525 applies.

Software Assurance Addresses Exploitable Software:
Outcomes of non-secure practices and/or malicious intent

Exploitation potential of vulnerability is independent of “intent”

‘High quality’ can
reduce security
flaws attributable
to defects; yet
traditional S/W
guality assurance
does not address
intentional
malicious
behavior in
software

Defects

Malware

EXPLOITABLE SOFTWARE

Unintentional Intentional
Vulnerabilities Vulnerabilities

S
-
T
t
A,V
a
r
e

*Intentional vulnerabilities: spyware & malicious logic deliberately imbedded (might not be considered defects)

@ Homeland
A~
%% 52 Securlty Note: Chart is not to scale — notional representation -- for discussions

Program Protection Plan Outline and
Guidance as “Expected Business

Practice”

Program Protection Plan
Outline & Guidance

Deputy Assistant Secretary of Defense
Systems Engineering

Signed by Principal
Deputy, USD(AT&L) on
July 18, 2011

What’s in the Policy Memo?

— “Every acquisition program shall submit a PPP

for Milestone Decision Authority review and
approval at Milestone A and shall update the
PPP at each subsequent milestone and the Full-
Rate Production decision.”

— Expected business practice, effective

immediately, and reflected in upcoming DoDI
5000.02 and DAG updates

The PPP is the Single Focal Point for All

Security Activities on the Program

http://www.acq.osd.mil/se/pg/index.html#PPP

Comprehensive Program Protection

5/1/2012 | Page 12 Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1841 applies.

IT/software security risk landscape is a convergence
between “defense in depth” and “defense in breadth”

Enterprise Risk Management
and Governance are security
motivators

Acquisition could be considered
the beginning of the lifecycle;
more than development

“In the digital age, sovereignty is
demarcated not by territorial frontiers
but by supply chains.”

— Dan Geer, CISO In-Q-Tel

A

aradigm-shifting end to end business models

Technology stack with the necessary and
Sipply sufficient components to support
Chains complimentary product providers

Product Oriented Building
Blocks
Networks Applications || Qperating
Frameworks Systems

Supply Chains \)
L} Risk

Synthesis SOLC ‘J Management

Platforms

Frameworks
. Applications — .

Analysis — Compliance

Networks

Operating Systems

Software Assurance provides a focus for:

-- Secure Software Components,

-- Security in the Software Life Cycle,

-- Software Security in Services, and

-- Software Supply Chain Risk Management

“Supply chain introduces risks to American society
that relies on Federal Government for essential
information and services.”

30 Sep 2005 changes to Federal Acquisition
Regulation (FAR) focus on IT Security

Focuses on the role of contractors in security as
Federal agencies outsource various IT functions.

“Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure

w’qh Home]_and Software Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis
s of May 2004 GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks”
2 Security

&
4N SEC

http://www.softwaretechnews.com/

BUILDING SECURITY IN

Risk Management (Enterprise 4= Project):
Shared Processes & Practices €@ Different Focuses

7
Rouse -<
"

» Enterprise-Level: k
= Regulatory compliance

User
Organization

= Changing threat environment —
= Business Case Develop
/ In-house

7

» Program/Project-Level:

T P)

f 2
= Cost Acquira' Outsource ?
Devalop

= Schedule
Acqulmf()ulsnmcnln\-
In-house

= Performance
Software Supply Chain Risk Management —"~~ ?
traverses enterprise and program/project interests *

Insert and enforce software assurance requirements in contracts.

2. Review IT security policies to ensure that all users of organizational networks and data comply
with the strictest security policies possible with respect to the mission.

UL,
S@ Homeland ine h h risk th izati fford and who i ble for that risk
%WD‘SEC&;- Securlty 3. Determine how much risk the organization can afford and who is accountable for that risk.

Thousands of downloads from open
Security Vulnerabilities libraries with documented vulnerabilities

It's not uncommon for vulnerabilities to be discovered in popular components. Updates that address the
problem are typically provided quickly. However, even when security warnings are posted and easily acces-

sible, they are often overlooked. In March 2009, the United States Computer Emergency Readiness Team
and the National Institute of Standards and Technology (US-CERT/NIST) issued a warning that the Legion of

the Bouncy Castle Java Cryptography APl component

2 years after a vulnerability was discovered,
organizations continue to download the
flawed version of Bouncy Castle

was extremely vulnerable to remote attacks. InJanu-
ary 2011, almost 2 years later, 1,651 different organiz-

ations downloaded the vulnerable version of Bouncy

(Castle from the Central Repository within a single month. v In January 2010, the US-CERT/NIST posted an
alert via their National Vulnerability Database that Jetty had a critical security flaw, which might allow attack-

ers to execute arbitrary code, overwrite files and allow unauthorized disclosure of information. Regardless

of the warning, in December of 2010, nearly a year later, approximately 11,000 different organizations down-

loaded the vulnerable version of Jetty from the Central Repository in a single month. vi

Making the problem harder to deal with is the fact that a single vulnerability in a popular low level compo-
nent may be used in hundreds, if not thousands of other commonly used open source projects as illustrated
in Figure 6. You might not even be aware that your application uses the vulnerable component because it is

buried multiple layers down in the open source component stack.

Source: Maximizing Benefits and Mitigating Risks of Open Source Components in
Application Development, by Sonatype

Even after vulnerabilities

- ng- _ At 4%
are discovered and Spring-beans-2.5.6 R
patches made available Vulnerabilty 5"
H b
CVE-2010-1622 S
many developers use the Severity critical) o
flawed, non-patched e
I ecls contain the ML - = 1!
version of reused 1447 iz coreame R COCE AL came
components % -m=- codehaus
& :'=I Comtimm umm
g
Cxif
roal,
} qliﬂace
Who makes risk %o,
L
.. _. e
decisions? ony,
‘o -:1:;.?"':.-}.:_5
Who inherits the o,

residual risk?

{3 55338 3%F%
Who ‘owns’ the g @ §isi R
residual risk i i
attributable to §

exp loitable software? Source: Maximizing Benefits and Mitigating Risks of Open

Source Components in Application Development, by Sonatype

Challenges in Mitigating Risks Attributable to
Exploitable Software and Supply Chains (cont.)

Enterprises seek comprehensive capabilities to:
» Avoid accepting software with MALWARE pre-installed. MAEC

» Determine that no publicly reported VULNERABILITIES CVE
remain in code prior to operational acceptance, and that
future discoveries of common vulnerabilities and exposures
can be quickly patched.

» Determine that exploitable software WEAKNESSES that C\WE
put the users most at risk are mitigated prior to operational
acceptance or after put into use (and not previously
evaluated for exploit potential).

@ Homeland

= Security

International Community
System Assurance Activities

+ |ISO/IEC 15026 — System and Software Engineering —
Systems and Software Assurance

— Establishes common assurance concepts, vocabulary, integrity levels and
lifecycle

« |SO/IEC 27036—IT Security Techniques—Supplier
Relationships

— Establishes techniques between acquirer and supplier for supply chain risk
management

« International Council on Systems Engineering (INCOSE)

— Systems Security Engineering (SSE) working group established to develop
SSE updates to INCOSE SE Handbook

« The Open Group (TOG)

— The Open Trusted Technology Provider Framework (O-TTPF) - open
standard that codifies best practices across the entire lifecycle covering:
— Product Development
— Secure Engineering
— Supply Chain Integrity
— http://www.opengroup.org/ogttf/

Comprehensive Program Protection r— _ . o .
5/1/2012 | Page 37 Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1841 applies.

Trusted Defense Systems Strategy
Basic Tenets

Prioritization:
— Focus security requirements on mission critical systems
— Within systems, identify and protect critical components, technology,
information
Comprehensive Program Protection Planning
— Early lifecycle identification of critical components
— Provide PMs with analysis of supply chain risk
— Protect critical components through trusted suppliers, or secure systems

design
— Assure systems through advanced vulnerability detection, test and evaluatlon
— Manage counterfeit risk through sustainment — || T

Partner with Industry
— Develop commercial standards for secure products

Program
Protection
|__Planning

Enhance capability through R&D 0
— Leverage and enhance vulnerability detection tools and Enhance
capabilities e
— Technology investment to advance secure software,
hardware, and system design methods

Prioritization

Partner
with
Industry

;Tg?g:g;oge;tion Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Program Protection
In Engineering Discipline

can be in Specifications TD Phase RFP IAS A MS B MS C FIT:TDBngg/Ii%Cvor
and/or Processes /\ /\ ﬂ /\ A~
Strategi Joint Materiel Engineering & - /
Guidance Concepts | [CBA| |ICD @ Solution Technology |cpp| Manufacturing cpp | Production and 0&S
(0SD/ICS) (COCOMS) Analysis Development Development Deployment 7

ASR SRR SFR PDR CDR

@Q@QQ %

Generic RF ;
LZQSL'Sge is 1‘ 1‘ 1‘ 1‘ 1‘ Integr_ated_ Process to Manage
Available Focus Scope of Protection Program Protection Security Risks
@ Analysis at SE J + Foreign Collection
Technical Reviews » Design Vulnerability
- N\ « Supply Chain Exploit/Insertion
Protect Capability from Supply

Chain/System Design Exploit

* Supply Chain Risk
Management SEP SEP SEP SEP
+ Software Assurance
* Information Assurance
\ _ PPP - PPP PPP PPP PPP jl>
e - . , , |
Protect Advanced Technology /4
Capability from Foreign Pre-EMD
Collection/Design Vulnerability Review
* Anti-Tamper . .
T Dl Emphasizing Use of Affordable,
L) Risk-based Countermeasures

;’/rf/gl?rg:g;ozeoction Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Tiered Supply Chain Problem

(Notional Example)

COTS .
SIW Foreign
Coders
—>| Software

| Custom | Foreign
> :
System Developer Suppliers Design
Tools
Integrator Open
> Source
OEM for
(e'g' S/w Router
Weapon
«| 2M Tier .
System 9 Router 7 Supp|ier Ag:r(;)sn Web
. Auction
Platform) Supplier
3rd Tier
2 Tier COTS
—>| Radar Supplier Supplier)
Converter

3rd Tier

Custom Custom

Develop- ASIC
ment

Supplier Threat can reside several layers down from System Inteqgrator

How is it shipped?

S -t) Manage Risks
How is it verified and validated ?

IS | _ Criticality
How is it physically protected? Schedule
Do you execute a Blind Buy? Cost

1st Tier Supplier

2"d Tier Supplier

3 Tier Supplier

4 Tier Supplier

Program Protection Process

5/1/12 Page 41 Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

PPP Methodology

Input Analysis Results: Initial Risk
T . Consequence of Posture
Criticality Analysis Results Losing Mission
- - Capability
Mission Criti_cal Lctlgrlﬁlziae::gg systemjmpact Rationale :
Functions | G0 ey | (11 11 1V) Very High
Mission 1 CF1 Processor X 1 Redundancy Hig h
CF2 SW Module Y | Performance Consequence
Mission 2 CF3 SW Algorithm A 1 Accuracy Moderate
CF4 FPGA 123 | Performance Low
Very Low '8
Supplier Risk Analysis Results — S
Critical [J
Supplier Components Analysis Findings X~
(HW, SW, Firmware) -
Supplier 1 Processor X Supplier Risk
FPGA 123 Supplier Risk \
Supplier 2 SW Algorithm A Cleared Personnel Lik'e”hOOd of LO'S.i ng
SW Module Y Cleared Personnel Mission Capab”'ty
. Near Certainty (VH) H H H
Vulnerability Assessment Results i 6 Risk Mitigation
; ..
Critical Components i DeCISlonS
HW S\ll)v Identified Exploit- System Impact E _ L|ke|y (M)
(8% 8% Vulnerabilities | ability | (1, 11, 111, 1V) xposure —
T Low Likelihood (L)
Vulnerability 1 Low Low i
IFOEEERY Vulnerability 4 Medium T Low i leely (VL) Conseq uence
Vulnerability 1 High High
Vulnerability 2 Low Low
Slolch Vulnerability 3 Medium C Medium
Vulnerability 6 High Low -8
SW Algorithm A None Very Low 1 Very Low g
Vulnerability 1 Low High =
RAERTE Vulnerability 23 Low I High g
_/ - —
-
Risk Mitigation and

Countermeasure Options

:/rf/%?r;azgofzctio" Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Cr|t|CaI|ty AnaIySiS Criticality
MethOdOI()gy Analysis

Inputs: Identify and Group
ICD —lp Missi Th ds b
CDD ISSION reaas oy
Concept of Operations Priority
Concept of Employment
Software development processes l " .
Sources and performance C”tlca“tv Levels
experience of key data handling] .]
components Identlfy Critical Functions Level I: Total Mission Failure
System architecture down to i TH i
ycomponem level Assign Criticality Levels Level II: Significapt/Unacceptable
Vulnerabilities l Degradation
%eélgcatlon PIEITE Level lll: Partial/Acceptable Degradation
B Map Threads and Functions to | Level IV: Negligible
Subsystems and Components
Leverage existing
mission assurance
analysis, including
flight & safety critical Outputs:

|dentify Critical Table of Level | & Il Critical
== | Functions and Components

Suppliers _
* TAC Requests for Information

f-,’,'f,‘fza’;‘azg’f; tion Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Supplier Risk
Analysis Analysis

Supplier Risk

« Critical Logic-Bearing components and (Commercial)
Software

 Contractor provides input data to the Program Office :
— ldentify suppliers of logic-bearing devices and software/firmware modules
- Provide who is designing, building, testing, and distributing critical
components and where
« Use intelligence community to conduct All-Source
Counterintelligence Analyses

— ldentifies foreign intelligence connections with suppliers of critical
components

— only provides threat analysis; doesn’t provide solutions
— Does not approve or qualify suppliers
— Does not disqualify any suppliers

Program Protection Process

5/1/12 Page 44 Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Vulnerability Assessment

Inputs: —— |dentify Potential

System Architecture Attack Vectors
Critical Functions and

components l
Concept of Operations
Software development Evaluate design and

processes b g
Procurement Processes processes based on

(COTS) attack vectors
Maintenance and sustainment

processes I,
Supply Chain . -
CVFI)ESCB:/WE Assess exploitability of

each attack vector

l

Determine overall

exposure

Outputs:
- Table of Vulnerabilities to
« critical functions and
critical components
 supply chain and
development processes
- Potential countermeasures

Program Protection Process
5/1/12 Page 45

Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

There are many definitions of “weakness” -- in this context

A (software) weakness is a property of software/
systems that, under the right conditions, may permit
unintended / unauthorized behavior.

*Common Weakness Enumeration (CWE) http://cwe.mitre.org/

There are many definitions of “vulnerability” -- in this context:

A (software) vulnerability is a collection of one or
more weaknesses that contain the right conditions to
permit unauthorized parties to force the software to
perform unintended behavior (a.k.a. “is exploitable”)

*Common Vulnerabilities and Exposures (CVE) http://cve.mitre.org/

* Part of ITU-T Cyber Information Exchange (CYBEX) series 1500; co-sponsored by DHS NCSD

Supply Chain
Risk Mitigation Considerations (2/2)

Q

Qg
a

Does the Developer Have:
— A design and code inspection process that requires specific secure design and coding
standards as part of the inspection criteria?
— Secure design and coding standards which considers CWE, Software Engineering Institute
(SEI) Top 10 secure coding practices and other sources when defining the standards?

Have Software Vulnerabilities Been Mitigated?
— Derived From Common Weakness Enumeration (CWE)
— Common Vulnerabilities and Exposures (CVE)
— Common Attack Pattern Enumeration and Classification (CAPEC)

Are Static Analysis Tools Used to Identify and Mitigate Vulnerabilities?

Does the Software Contain Fault Detection/Fault Isolation (FDFI) and Tracking or
Logging of Faults?

Do the Software Interfaces Contain Input Checking and Validation?

Is Access to the Development Environment Controlled With Limited Authorities
and Does it Enable Tracing All Code Changes to Specific Individuals?

Are Specific Code Test-Coverage Metrics Used to Ensure Adequate Testing?

Are Regression Tests Routinely Run Following Changes to Code?

Program Protection Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

5/1/12 Page 47

Software Assurance -
Risk Mitigation Approaches for measure
Security (1/3) =

 Development and integration environment for critical functions
— Secure design and coding standards

Authentication

Safe memory allocation and management
Input validation

Security-aware error and exception handling
Non-informative error messages

— Vulnerability and weakness data bases

CVE to identify and coordinate SW vulnerabilities that allow attacker exploitation
CWE to examine software architecture/design and source code for weaknesses
CAPEC for the analysis of common destructive attack patterns

— Design and code inspections for security based upon secure design and
code standards

— Code scanning and correction

Identify which vulnerabilities types will be detected and resolved as part of the contract
— Support with static analysis tools or inspections

— Penetration testing
— Alignment with SCRM (supply chain integrity)

Ensure SW of known pedigree to counter malicious insertion for remote exploitation

Program Protection Process
5/1/12 Page 48

Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Software Assurance
Risk Mitigation Approaches for measure
Security (2/3) Seeeion

Counter-

« Operational system critical function design considerations
— Fail over / multiple supplier redundancy
— Fault isolation
— Least privilege and separation of privilege
— System element (critical Function) Isolation
— SW Load Key

— Alignment with SCRM (supply chain integrity)
— Ensure SW with secure interfaces and networks to counter cyber attacks

 Development /Integration Environment Tools Security
— Pedigree
— Availability of source code for inspection / scanning
— Release Inspection and testing for malicious insertion
— Inspection of generated code

:/rf/gi?r;aZ;oze;tion Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Software Assurance -
Risk Mitigation Approaches for measure
Security (3/3) =

* Alignment with FY11 NDAA Section 932 Software
Assurance (SwA) Strategy

— Include contract requirements for SWA
— Include SwA in milestone reviews and approvals

— Include rigorous T&E of SwA in development, acceptance, and operational tests
— Assure the security of software and software applications during software development
— Detect vulnerabilities during testing of software

Detect intrusions during real-time monitoring of software applications
— Remediation in legacy systems of critical SWA deficiencies

:;fﬂ;’“;azgogegtio" Process Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Software Assurance Methods

Counter-

measure
Selection

Development Process

Apply assurance activities to the
procedures and structure imposed on
software development

Operational System

Implement countermeasures to the
design and acquisition of end-item
software products and their interfaces

Development Environment

Apply assurance activities to the
environment and tools for developing,
testing, and integrating software code
and interfaces

Table 5.3-5-5: Application of Software Assurance Countermeasures (sample)

Development Process

funflci'fol: 2::11{5:;’;1r1:i:c:'clher A:taal::;s Design Ilfs:li::t CVE EAREE | EWE S [Fon Co-\l;eaﬂga
software) , pla Inepect pla pie pin Pl Tost pla
Developmental CP1 SW 100/80% LZ:V;S 100/80 100/60 | 100/60 | 100/60 | Yes 75/50%
bbbl o] 100/80% Two | 4o0i80 | 10070 | 100170 | 10070 | Yes | 75/50%
Function W Levels
Other Developmental SW none One level 100/65 1040 1040 1040 Na 50/258%
COTS CPI and Critical Vendor Vendor i} 0
Function SW Vendor SwA SwA SwA 0 Yoo UNK
0
COTS (other than CPI and
Critical Funetion) and NDI SW Na No Na 0 0 No UNK
Operational System
Failover Input
Multiple Fault Least System Element Pt SW load
. . .. " checking /
Supplier Isolation | Privilege Isolation P key
validation
Redundancy
Developmental CP1 SW 30% All all yes All All
Developmental Critical o
Function SW 50% All All yes All all
Other Developmental SW none Partial none Naone all all
COTS (CPI asrﬁrCF) and NDI none Partial Al None Wragl;l}ers.f all
Development Environment
Generated
SW Product Source Rele_a - . code.
testing inspection
pla
C Compiler Na Yes 50420
Runtime libraries Yes Yes 70/none
Automated test system Nao Yes 50/none
Configuration management No Yes NA
system
Database No Yes 50/none

Development Environment
Access

Controlled access; Cleared personnel only

Additional Guidance in PPP Outline and Guidance

Program Protection Process

5/1/12 Page 51

Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Risk Cost Benefit Trade-off (G

=

Risk Mitigation
— > Decisions

4

Consequence

Documented tradet
off provides the
rationale for the

decisions m/d<
[\ VA\/ \!

Distribution Statement A — Cleared for public release by OSR on 4/25/2012, SR Case # 12-S-1842 applies.

Likelihood

Risk Mitigation and

Countermeasure Options

Program Protection Process
5/1/12 Page 52

Common Weakness Risk Analysis Framework (CWRAF)

How do I identify which of the 900+ CWE’s are most
important for my specific business domain,
technologies and environment?

Common Weakness Scoring System (CWSS)

How do | rank the CWE’s | care about according to
my specific business domain, technologies and
environment?

How do | identify and score weaknesses important to my
organization?

Technical Impacts — Common Consequences

o060

CWE - CWE-89: Improper Neutralization of Special Elements used in an SQOL Command ('SQL Injection’) (2.1)

‘C.f cwe.mitre.org/data/definitions/89.html

c | (*8~ coogle

Q.

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tvpes

Full Dictionary View
Development View
Research View
Reports

[k R
Sources
Process
Documents
FAQs
[|
Related Activities
Discussion List
Research
CWE/SANS Top 25
CWSS

CWRAF

T-Shirt

News

Calendar

Free Newsletter
Compatibility
Program
Requirements

Coverage Claims
Representation

Compatible Products

Make a Declaration

Contact Us

Search the Site

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

ID: 89 ¢
¥ Description
Description Summary

Base)

The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could medify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary
user data. This can be used to alter query logic to bypass security checks, or to insert additional statements that modify the back-end database, possibly including execution of

system commands.

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Status: Draft

SQL injection has become a comy
even a minimal user base is likel
data planes.

* Time of Introduction

® Architecture and Design
* Implementation
* Operation

¥ Applicable Platforms
Languages
All

Technology Classes
Database-Server

* Modes of Introduction
This weakness typically appears if

¥ Common Consequences

Scope Effect

Confidentiality Technical Impact: Res
Since SQL databasq

Access Technical Impact: Sy
Control If poor SQL commal
the password.
Access Technical Impact: Byy
Control If authorization infg
vulnerability.
Integrity Technical Impact: Mod

Just as it may be p

MITRE

¥ Common Consequences

Scope
Confidentiality

Access
Control

Access
Control

Integrity

Effect
Technical Impact: Read application data

Since SQL databases generally hold sensitive data, loss
Technical Impact: Bypass protection mechanism

If poor SQL commands are used to check user names af
the password.

Technical Impact: Bypass protection mechanism
If authorization information is held in a SQL database, if

vulnerability.
Technical Impact: Modify application data

Just as it may be possible to read sensitive information,

©2012 MITRE

Technical Impacts —
Common Weakness Risk Analysis Framework (CWRAF)

Modify data

Read data

DOS: unreliable execution

DOS: resource consumption

Execute unauthorized code or commands
Gain privileges / assume identity

Bypass protection mechanism

Hide activities

MITRE ©2012 MITRE

Technical Impacts for CWE Entries

Note that this list is likely to change in future CWE versions.

CWE-89 (SQL Injection) has three technical impacts as listed in the
Common_Consequences element of the CWE entry:

e Read application data

e Modify application data
e Bypass protection mechanism

For CWE-120 (CIanic Buffer Overflow), the listed technical impacts are:

e Execute unauthorized code or commands
e DO0S: crash / exit / restart

ID

Name

Subscore

Max

Technical Impacts and
Importance Subscores

CWE-89

SQL Injection

* Read data (8)
* Modify data (8)

* Bypass protection mechanism

(7)

CWE-120

Classic Buffer
Overflow

10

* Execute unauthorized code or
commands (10)

* DoS: unreliable execution (4)

Scoring Weaknesses Discovered in Code using CWSS

Analysis

Vignette
Technical Impact
Scorecard

Line
Line
Line
Line 212:
Line

Scoring
Engine

MITRE

Steps:

1. Establish weightings for the
vignette

2. Run code through analysis tool(s)

3. Tools produce report of CWE’s
found in code

4. CWSS scoring engine

automatically scores each CWE
based on vignette definition

5. Go to step 2 for each piece of

code applicable to this vignette

Line
Line
Line
Line
Line

212>
TL3
23:
104:
213:

CWE-9:
CWE-84:
CWE-109:
CWE-482:
CWE-754:

~ O
W W

o W un
(=B

Step 1 is only done once — the rest is automatic

CWRAF/CWSS in a Nutshell

CWSS

Scoring

User-defined

score | W
97 CWE-79
95 CWE-/8
94 CWE-22
94 CWE-434
94 CWE-798
93 CWE-120
93 CWE-250
92 CWE-770
91 CWE-829
91 CWE-190
91 CWE-494
90 CWE-134
90 CWE-772 | cutoff
90 CWE-476
90 CWE-131

W is all possible weaknesses:; Wd is all known weaknesses (CWE)

Engine

“Vignette

Most
Important

Weaknesses

CWE Coverage Claims

Set of CWE'’s a capability claims to

cover
Tool A .

Tool B Q

Pen

Testing

Service Which static analysis tools and Pen Testing

services find the CWE’s | care about?

MITRE ©2012 MITRE

CWSS for a Technology Group

Web Application Technology Group Top 10 List

CWE Top 10 List for Web Applications can be used to:
« Identify skill and training needs for your web team
* Include in T’s & C’s for contracting for web development
* ldentify tool capability needs to support web assessment

MITRE ©2012 MITRE

ClE

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types e

SOFTWARE
ERRORS

CWE List

Full Dictionary View

Development View
Research View
Reports

Sources
Process
Documents
FAQs

SwA On-Ramp
T-Shirt

Discussion List
Discussion Archives

CWSS
CWRAF
CWE/SANS Top 25

Compatibility

Requirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar
Free Newsletter
Contact Us

Search the Site

Section Contents

CWRAF
Introduction
CWSS Scoring in CWRAF
Creating Your Own Vignettes
Future Versions and Activities

Common Weakness Risk Analysis Framework (CWRAF™)

CWRAF provides a framework for scoring software weaknesses in a consistent, flexible, open manner, while
accommodating context for the various business domains. It is a collaborative, community-based effort that is
addressing the needs of its stakeholders across government, academia, and industry. CWRAF is a part of the

Common Weakness Enumeration (CWE™) project, co-sponsored by the Software Assurance program in the Change Log
National Cyber Security Division (NCSD) of the US Department of Homeland Security (DHS). Vignettes -
Tech Groups and Domains
CWRAF benefits: Archetypes
CWRAF FAQs

¢ Includes a mechanism for measuring risk of security errors ("weaknesses") in a way that is closely
linked with the risk to an organization's business or mission.

o Supports the automatic selection and prioritization of relevant weaknesses, customized to the specific
needs of the organization's business or mission.

¢ Can be used by organizations in conjunction with the Common Weakness Scoring System (CWSS™) to
identify the most important weaknesses for their business domains, in order to inform their acquisition
and protection activities as one part of the larger process of achieving software assurance.

CWSS
Terms of Use

CWRAF and CWSS allow users to rank classes of weaknesses independent of any particular software package,
in order to prioritize them relative to each other (e.qg., "buffer overflows are higher priority than memory
leaks"). This approach, sometimes referred to as a "Top-N list," is used by the CWE/SANS Top 25, OWASP
Top Ten, and similar efforts. CWRAF and CWSS allow users to create their own custom Top-N lists.

CWRAF Version 0.8.1

e Introduction

o How to Use CWRAF

o Relationships between CWRAF, CWSS, and CWE
o CWSS Scoring in CWRAF

o Scoring Weakness Findings Using Vignettes

Vignettes — Technology Groups & Business/Mission Domains

Business/Mission
Domains

Technology

Web
Applications

Vignette
Real-Time for
g;’sl:gﬁged Domain/

Tech Gp
Control N—

Systems

End-Point
Computing
Devices

e —

Qommon Vignette for Technology Group

P —

Database &
Storage Sys

Operating
Systems

Identity Mngt
Systems

Common Vignette for Domain

/

Enterprise
Sys Apps

Cloud
Computing

il
\
o
- O
® o
538
&S
e

Common Weakness Risk Assessment Framework uses Vignettes with Archetypes to identify top CWEs in respective Domain/Technology Groups

Tech Groups /
Business Domains

banking-
finance

Web Applications

fin-trade,
g-banking

Real-Time Embedded
Systems

Control Systems

End-Point Computing
Devices

chemical | ecomm

refail-www

chem-flow

Database & Storage
Systems

e-banking

Operating Systems

Identity Management
Systems

Enterprise Systems &
Applications

e-anking

Cloud Computing

Enterprise Security
Products

Network
Communications

refail-www

retail-www

retail-www

emerg-
sVC

first-resp

energy evoting human- res
smart-meter, smart-grd-RUS, smart . i s
qrid-ow, reg-elec, scada-hist, SrEp—_—p emp-com
lweb-scada-hmi (UEME!, Srp Vole
smart-meter, smart-qrid-RUS, smart- g ORE
smart-meter, smart-grid-RUS, smart-
arid-qw, reg-elec, scada-hist,
Iweb-scada-hmi
scada-hist, web-scada-hmi evoting-DRE emp-comp
iy glec-abs-int, evoting:
i Internet, corp-vote
scada-hist, web-scada-hmi D040 I, ot emp-com
’ Internet, corp-vote
evoling-DRE,

web-scada-hmi

gvoling-Internet

natl- defense

pub- health

s0¢- media

telecom

med-billing,

s0c-nef,

tel-ras,

med-device

elec-date

web-mail

‘weap-sensor

med-device

med-device

med-illng

med-billing,

:

med-device

med-illing,

med-device

Domain Summary

This is an up-to-date list of domains as used by CWRAF. For each domain, a list of associated vignettes is provided.

Domain

Description

e-Commerce

The use of the Internet or other computer networks for the sale of products and services, typically using the WWW.

Vignettes: Web-Based Retail Provider

Banking & Finance

Financial industry, including depository financial institutions (banks, thrifts, and credit unions), insurers, securities brokers/dealers, investment

companies, some financial utilities, and their associated regulatory systems and agencies.

Vignettes: Financial Trading, Online Banking

Smart Grid (electrical network through a large region, using digital technology for monitoring or control), nuclear power stations, oil and gas

transmission, etc.

Energy Vignettes: Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow Control,
|SCADA Historian, Distributed Production Facility Management using SCADA Web-based HMI
Chemical processing and distribution, etc.
hesion Vignettes: Chemical Flow Control
Plants and distribution channels, supply chain, etc.
ManuAchirg No vignettes defined.
Aerospace (such as safety-critical ground aviation systems, on-board avionics, etc.), highway, maritime transportation, mass transit, pipeline
Shipping & systems, and rail.
Transportation

No vignettes defined.

National Defense

Weapon systems, Intel networks, Defense Industrial Base, etc.

Vignettes: Weapon system sensor

Homeland Security

CBP, Coast Guard, Secret Service, TSA, etc.

No vignettes defined.

Government (Other)

Government (other than National Defense and Homeland Security)

No vignettes defined.

Emergency Services

|Systems and services that support for First Responders, incident management and response, law enforcement, and emergency services for

citizens, etc. The organizations and processes for protecting and preserving critical assets before, during, and after a disaster or catastrophe.

Vignettes: First Responder

Public Health

|Health care, medical encoding and billing, patient information/data, critical or emergency care, medical devices (implantable, partially

embedded, patient care), drug development and distribution, food processing, clean water treatment and distribution (including dams and
processing facilities), etc.

Vignettes: Medical Billing, Human Medical Devices

Food & Water

Food processing, clean water treatment and distribution (including dams and processing facilities), etc.

No vignettes defined.

Telecommunications

Cellular services, land lines, VOIP, cable & fiber networks, etc.

Vignettes: Teleworking - Remote Access Server, Teleworking - Web Mail

Teleworking

Support for employees to have remote access to internal business networks and capabilities, e.g. networking-capable PDAs and cell phones,
VPNs, Network Access Control (NAC), Web-based email services, etc.

No vignettes defined.

e-Voting

Electronic voting systems, whether for state-run elections, shareholder meetings, etc.

Vignettes: State Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via Direct
Recording Election Machines., State or Local Elections using eVoting via an Internet web application, Corporate Shareholder Internet voting

Social Media

| (Example Domain) The use of the Internet or other computer networks for communication, collaboration, or entertainment in which a large

group of users can interact with each other. This includes social networking, wikis, blogs, music and photograph sharing, product/service
reviews, bookmarking, etc.

Vignettes: Social Networking, Electronic Dating

Human Resources

(Example Domain) Human resources - management of personnel within an organization, including recruitment, compensation (salary and

benefits), performance assessment, training, etc.

Vignettes: Employee Compensation

Vignette Summary

|banking-finance

Financial Trading

Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database containing PII, credit card numbers, and
inventory.

Online Banking

The web-based interaction between a bank, credit union, or other financial institution and its consumers for managing accounts, paying
bills, and conducting financial transactions.

|chemica|

Chemical Flow Control

A SCADA-based flow control system for a chemical plant. Underlying technology - heavy C usage. Systems developed in pre-Internet era
with management consoles interfacing to them.

|ecomm |

Web-Based Retail Provider ilr?sz:;z;f.acing, E-commerce provider of retail goods or services. Data-centric - Database containing PII, credit card numbers, and
|emergfsvc

lFirst Responder |First responder (such as fire, police, and emergency medical personnel) for a disaster or catastrophe.

[energy

|Household Smart Meter

‘Meter within the Smart Grid that records electrical consumption and communicates this information to the supplier on a regular basis.

Smart Grid remote utility
server

Obtains information from smart meters through neighborhood gateways.

Smart Grid Neighborhood
Gateway

Appliance between smart meter and remote utility server.

Regional Electricity Flow
Control

Flow control for an electricity network throughout a relatively large region, to further connect suppliers and consumers. Power now
enters the grid from both sides (classic provider, but also home-to-provider e.g. home photo-voltaic and wind turbines in homes and
throughout the landscape). System needs to have "smarts" to the load leveling capabilities of the grid which is basically a large
distributed SCADA-type system.

SCADA Historian

Historian server for archival and analysis of data for @ SCADA system. Contains @ database backend and is accessible via a web
interface. Access to the server is typically restricted to a DMZ or internal network.

Distributed Production Facility

Management using SCADA
Web-based HMI

A web-based Human Machine Interface (HMI) for SCADA systems. Users can visualize and control industrial automation processes in
real-time from a control interface directly in communication with remote sensors and data collection points. All facets of production can
be monitored and managed from a web browser.

The HMI uses various frameworks (Java, .NET, etc.) with Restful Architecture (AJAX, XML, SOAP, XSL, and WML).

|
levoting

State Election Administration

using remote Internet voting
via absentee ballot

Internet-facing polling system supporting high-volume transactions, high availability, Data-centric Database containing ballot
information, Audit log generation for each voter.

State or Local Elections using
eVoting via Direct Recording
Election Machines.

DRE systems are not directly connected with the Internet. Vote data is uploaded to a centralized server via modem. Election worker
retrieves hardcopies of the voting record from the machine and delivers the printouts to election officials. DRE machines are
programmed with firmware uploaded from a compact flash card. It is generally accepted that the computer used to upload the firmware
to the flash card should not be connected to the Internet.

State or Local Elections using
gVoting via an Internet web

application

Internet-facing polling systems are connected to the Internet and are designed to support high-volume transactions and high
availability. A Data-centric Database is used to collect ballot information, Audit logs are generated for each voter.

Corporate Shareholder
Internet voting

Corporate Shareholder voting using remote Internet voting

|human-res

Employee Compensation

Product for managing employee salary and bonuses. PII includes salary, financial transaction (e.g. for direct deposit), social security
number, home address, etc.

|natl-defense

IWeaDon system sensor

Sensor for @ weapons system that is connected to the Global Information Grid (GIG).

|pub-health

Medical Billing

Medical encoding and billing. Data used includes Electronic Health Records (EHR), financial management, interactions with insurance
companies.

Human Medical Devices

Medical devices - "implantable" or "partially embedded" in humans, as well as usage in clinic or hospital environments ("patient care”
devices.) Includes items such as pacemakers and automatic drug delivery. Control or monitoring of the device might be performed by
smartphones. The devices are not in a physically secured environment.

soc-media

Social Networking

Web site for enabling a large community of people to post comments, create profiles, exchange messages or pictures, and join affiliation
groups, e.g. Facebook, MySpace, Twitter, or LinkedIn. Free-form content, high connectivity between users, private messaging. Heavy
Web 2.0 usage.

Electronic Dating

Web site for electronic dating. Users can create profiles with pictures, exchange private email, participate in discussion forums, perform
searches. Heavy Web 2.0.

|te|ecom

Teleworking - Remote Access
Server

Remote Access Server used to support employees working outside the enterprise, including teleworking/telecommuting.

|Teleworking - Web Mail

Use of web-based email for remote access.

c fe Common Weakness Enumeration s QLSS
/- A Community-Developed Dictionary of Software Weakness Types 1 bt C77RA
\AY/

ERRORS

TS Creating Your Own Vignettes
Full Dictionary View CWRAF

Development View | Currently, there are approximately 20 Vignettes and Technical Scorecards, but anyone can create their own Introduction

Research View Vignette and its accompanying Technical Scorecard to identify which CWEs are most significant to their ook Lo
hepocts business and applications. This section will help guide you through that process. Girating Your:Qm Vigneties
m Future Versions and Activities
Sources One of the items found in these sample Vignettes is the "Archetypes". A list of the currently defined Fhange Log

Process Archetypes that are available for use in describing Vignettes is here. If there are new Archetypes you need ‘T"g':;tes —
Documents just identify them and send them to cwe@mitre.org and we can add them to the list. A:zhet;:::s e
FAQs

Community These Archetypes are used as the context for describing the technical elements utilized by the application
SwA On-Ramp described in the Vignette.

CWRAF FAQs

CWSS

T-Shirt

Blecisaon s There are two tables for each Vignette, "Vignette Definition" and "Technical Impact Scorecard". TS ortise
Discussion Archives
I Vignette Definition A
CWSS
CWRAF Creating a Vignette Definition basically comes down to filling in the Vignette Definition table. Below is an
cwe/sansop 25 | example Vignette Definition table with a specific Vignette for a Web-Based Retail Provider described. The
Vignette Definition is meant to talk about what business issues are of concern for the application. Is the
Requirements application dealing with PII? Credit card (PCI-relevant) data? How bad is each of the 8 Technical Impacts
goverage Claims given what the application is doing for a business (in the business's operational context).

epresentation
Compatible Products

: Name Web-Based Retail Provider
Make a Declaration i

O, et
Calendar {

Free Newsletter Maturity |under-development
Contact Us

Domain ecomm
Search the Site

Internet-facing, E-commerce provider of retail goods or services. Data-centric - Database

|nnf-n

~ e e v e

CWRAF - Archetypes

Following is a list of the archetypes that are used in CWRAF.

Anti-Virus Program

Authentication Server

Teleworking - Remote Access Server, Teleworking - Web Mail

|BZB Communications lrMedicaI Billing

ICustom applications |

Web-Based Retail Provider, Online Banking, Medical Billing, SCADA Historian, Distributed Production Facility Management using SCADA

Database Web-based HMI, Employee Compensation
Development State or Local Elections using eVoting via an Internet web application
Framework

Digital certificate

Distributed Control
System (DCS)

|Document Processing |

Human Medical Devices, Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, State or Local Elections

Embedded Device

using eVoting via Direct Recording Election Machines., Weapon system sensor

Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via Direct Recording Election

Endpoint System

Machines.

Firewall

Web-Based Retail Provider, Medical Billing, Human Medical Devices, Distributed Production Facility Management using SCADA Web-based HMI,

Genera‘kl-purpose 0s

State Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via an Internet web

application, Corporate Shareholder Internet voting

Infrastructure as a
Service (1aaS)

Internet

Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via an Internet web application

Communications

J2EE and supporting ||... : :
rinanciel frading

ffameworks Financial Tradin

Laptop

Modem

State or Local Elections using eVoting via Direct Recording Election Machines.

Communications

N-tier distributed

Financial Trading

PDA

iPKI

Platform-as-a-Service
(Paas)

IPrivacy management

Process Control
Systems

Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow Control, SCADA Historian,
Distributed Production Facility Management using SCADA Web-based HMI, Chemical Flow Control

Programmable Logic
Controller (PLC)

_Proprietary Firmware

|State or Local Elections using eVoting via Direct Recording Election Machines.

Remote Terminal Unit
(RTU)

Removable Storage
Media

State or Local Elections using eVoting via Direct Recording Election Machines.

lRouter

SCADA

SOA-based web
service

Service-oriented
architecture

Social Networking, Electronic Dating

ISmartphone

[Human Medical Devices, First Responder

Software-as-a-Service
(Saas)

Transactional engine

Financial Trading, Online Banking

VPN

Virtualized 0S

Web application

[Distributed Production Facility Management using SCADA Web-based HMI, State or Local Elections using eVoting via an Internet web application

Web browser

Web-Based Retail Provider, Online Banking, Medical Billing, Distributed Production Facility Management using SCADA Web-based HMI, State
Election Administration using remote Internet voting via absentee ballot, State or Local Elections using eVoting via an Internet web application,
Corporate Shareholder Internet voting, Social Networking, Electronic Dating, Employee Compensation, Teleworking - Remote Access Server,
Teleworking - Web Mail

Web browser plugin

Human Medical Devices, Household Smart Meter, Smart Grid remote utility server, Smart Grid Neighborhood Gateway, Regional Electricity Flow

Web-dlent Control, SCADA Historian
Web proxy

Web-Based Retail Provider, Online Banking, Medical Billing, Regional Electricity Flow Control, SCADA Historian, Distributed Production Facility
Wabi sarvas Management using SCADA Web-based HMI, State Election Administration using remote Internet voting via absentee ballot, Corporate

Shareholder Internet voting, Social Networking, Electronic Dating, Employee Compensation, Teleworking - Remote Access Server, Teleworking -
Web Mail

Web service

!Distributed Production Facility Management using SCADA Web-based HMI

Software Assurance Automation

e Use cases for SWA Automation:

- SWA conditions/evidence for apps In an
app store

- SWA rating systems for determining which
weaknesses are most important

- Review/Discussion of the updated "Key
Practices" Pocket Guide draft
o Security automation standards in a cyber
campaign and kill chain, as well as
commercial offerings and operations and

development

©2012 MITRE

Key Practices for
Mitigating the Most
Egregious Exploitable
Software Weaknesses

Software Assurance Pocket Guide Series:
Development, Volume II
Version 2.2, June 26, 2012 (Draft)

o L
o A

BUILDING SECURITY IN

ﬁ.;

L S

-

v

SOFTWRRE
ASSURANCE

Software Assurance (SwA) Pocket Guide Resources

Thas is a resource for “getting started” in selecting and adopting relevant practices for engineenng, developing, and
delivering secure software. As part of the Software Assurance (SwA) Pocket Guide series, this resource is offered

for informative use only; it 1s not intended as directive or presented as being comprehensive since it references and
summarizes material in the source documents and on-line resources that provide detailed information. When referencing
any part of this document, please provide proper attribution and reference the source documents, when applicable.

This volume of the SwA Pocket Guide series focuses on key practices for mitigating the most egregious exploitable
software weaknesses. It identifies mission/business risks attributable to the respective weaknesses, it identifies
common attacks that exploit those weaknesses, and provides recommended practices for preventing the
weaknesses. It provides insight for how software weaknesses are prioritized to guide training, development and
procurement efforts.

At the back of this pocket guide are references, limitation statements, and a listing of topics addressed in the SwA
Pocket Guide series. All SwA Pocket Guides and SwA-related documents are freely available for download via the SwA
Community Resources and Information Clearinghouse at _http://buildsecurityin.us-cert.gov/swa .

BUILDING SECURITY IN

.
SOF TWARE
ASSURANCE |

Acknowledgements

The SwA Forum and Working Groups function as a stakeholder mega-community that welcomes additional participation
n advancing software sccurity and refining SwA-related information resources that are offered free for public use. Input
to all SwA resources is encouraged. Please contact Software. Assurance@ dhs.gov for comments and inquiries.

The SwA Forum 1s composed of government, industry, and academic members. The SwA Forum focuses on
ncorporating SwA considerations in educatoin, acquisition, and development processes relative to potential risk
exposures that could be introduced by software and the software supply chain.

Participants in the SwA Forum's Processes & Practices Working Group collaborated with the Technology, Tools and
Product Evaluation Working Group in developing the material used in this pocket guide as a step in raising awareness on
how to incorporate SwA throughout the Software Development Life Cycle (SDLC).

Lacking common charactenization of exploitable software constructs and how they could be attacked with associated
mitigation practices previously presented one of the major challenges to realizing software assurance objectives. As part

Key Practices for Mingeteg the Most Egregious Expioicadle Software Weaknessss l

» "Fundamental Practices for Secure Software Development, 2ND EDITION, A Guide to the Most Effective
Secure Development Practices in Use Today®, SAFECode, February 8, 2011 at hitp:iiwww safecode.org!

publications/SAFECode_Dev_Practices021 I pdf

Background

The 2011 CWE/SANS Top 25 Most Dangerous Programming Errors is a consensus list of the most significant
programming errors that can lead to serious software vulnerabilities. They occur frequently, are often casy to find, and
casy to exploit. They are dangerous because they will frequently allow attackers to completely take over the software,
steal data, or prevent the software from working at all.

The list is the result of collaboration between the MITRE CWE team, many top software security experts in the US

and Europe, and the SANS Institute. It leverages experiences in the development of the SANS Top 20 attack vectors (
htp:/fwww sans.org/top2(/), MITRE's Common Weakness Enumeration (CWE) (http://cwe . mitre.org/), and MITRE's
Common Attack Pattern Enumeration and Classification (CAPEC) (https:/capec.mitre org/). With the sponsorship and
support of the US Department of Homeland Security's National Cyber Secunity Division Software Assurance Program,
MITRE maintains the CWE and CAPEC websites, presenting detailed deseriptions of the top 25 programming errors
along with authoritative guidance for mitigating and avoiding them. The CWE site also contains data on more than 800
additional programming errors, design errors, and architecture errors that can lead to exploitable vulnerabilities. See
CWE Frequently Asked Questions at http://cwe.mitre org/about/fag html .

A goal for the CWE Top 25 list 15 to stop vulnerabilities at the source by educating programmers on how to eliminate
all-too-common mistakes before software is even shipped. The list serves as a tool for education and awareness to help
programmers prevent the kinds of vulnerabilities that plague the software industry. Software consumers can use the same
list to help them to ask for more secure software. Finally, software managers, testers, and CIOs can use the CWE Top 25
list as a means for selecting the best tools and services for their needs and as a measuring stick of progress in their efforts
to secure their software.

Top 25 Common Weaknesses

Table 1 provides the Top 25 CWESs organized into three high-level categories that contain multiple CWE entries:
1. Insecure Interaction Between Components
2. Risky Resource Management
3. Porous Defenses

|Table 1 - Top 25 Common Weakness Enumeration (CWE)
Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is seat and received besween separate components, modules, programs,
. Or systems.

CWE-78 | Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’).

CWE-79 | Improper Neutralization of Input During Web Page Generation ('Cross-site Seripting’).

CWE-89 | Improper Neutralization of Special Elements used in an SQL Command {'SQL Injection’).

CWE-352 | Cross-Site Request Forgery (CSRF).

CWE-434 | Unrestricted Upload of File with Dangerous Type.

CWE-601 | URL Redirection to Untrusted Site (‘Open Redirect).

4 Seftware Asswance Pocker Guide Series
Developmers, Version 2.2, Tene 26, 2012 (D)

Risky Resource Management

These weaknesses are elated to ways in which software does not properly manage the creation, usage, transfer, o destruction of

qumm.

CWE-22 | Improper Limitation of a Pathname to & Restricted Directory (Path Traversal).
CWE-120 | Buffer Copy without Checking Size of Input ('Classic Buffer Overflow’).
CWE-131 | Incorrect Calculation of Buffer Size.

CWE-134 | Uncoatrolled Formar String.

CWE-190 | Integer Overflow or Wraparound.

CWE-49%¢ | Download of Code Without Integrity Check.

CWE-676 | Use of Potentially Dangerous Function.

CWE-829 | Inclusion of Functionality from U d Control Sphese.

These weaknesses are related to defensive techaiques that are often misused, abused, or just plain ignoced.

| CWE Description
CWE-250 | Exccution with Unnecessary Privileges.

CWE-206 | Missing Authentication for Critical Function.

CWE-207 | Improper Restriction of Excessive Authentication A
CWE-311 | Missing Encryption of Sensitive Data.

CWE-327 | Use of & Broken or Risky Cryptographic Algorithm.

CWE-732 | Incorrect Permission Assignment for Critical Resource.
CWE-759 | Use of a One-Way Hash without a Salt.
CWE-798 | Use of Hard-coded Credentials.
CWE-R07 | Reliance on U d [nputs in & Security Decision.
CWE-R62 | Missing Authoeization.
CWE-863 | Incorrect Authorization.

Selection of the Top 25 CWEs

The Top 25 CWE list was first developed at the end of 2008 and 15 updated on a yearly basis. Approximately 40
software security experts provided feedback, including software developers, scanning tool vendors, security consultants,
government representatives, and university professors. Representation was international. Intermediate versions were
created and resubmitted to the reviewers before the list was finalized. More details are provided in the Top 25 Process
page at http://cwe.mitre org/top2Siprocess.html .

To help characterize and priontize eatries in the Top 25 CWE hist, a threat model was developed that identified
an attacker with solid technical skills and determined enough to invest some time into attacking an organization.
Weaknesses in the Top 25 were selected using two pimary critena:

» Weakness Prevalence: how often the weakness appears in software that was not developed with security
integrated into the software development life cycle (SDLC).

» Consequences: the typical consequences of exploiting & weakness if it is present, such as unexpected code
execution, data loss, or denial of service.
Prevalence was determined based on estimates from multiple contributors to the Top 25 list, since appropriate statistics
were not readily available.

With these criteria, future versions of the Top 25 CWEs will evolve to cover different weaknesses. Other CWES that
represent significant risks were listed as being on the cusp, and they can be viewed at http:/cwe.mitre.org/ .

Key Practices for Mitgetieg the Most Egregious Exploitidie Softwase Weknesses 5

Information about the Weaknesses

The primary audience for CWE information is intended to be software programmers and designers. For each individual

CWE entry, additional information is provided.

» CWEID and name.

» Supporting data ficlds: supplementary information about the weakness that may be uscful for decision-makers to

further prioritize the entries.

» Discussion: Short, informal discussion of the nature of the weakness and its conseguences.

» Prevention and Mitigations: steps that developers can take to mitigate or eliminate the weakness. Developers
may choose one or more of these mitigations to fit their own needs. Note that the effectivencess of these
techniques vary, and multiple techniques may be combined for greater defense-in-depth.

» Related CWEs: other CWE entries that are related to the Top 25 weakness. Note: This list is illustrative, not

comprehensive.

» Related Attack Patterns: CAPEC entries for attacks that may be successfully conducted against the weakness.

Note: the list is not necessarily complete.

See hitp://ewe.mitre.org for the additional supporting information on each CWE.

Other Supporting Data Fields in CWEs

Each Top 25 entry includes supporting data fields for weakness prevalence and consequences. Each entry also includes

the following data fields.

» Attack Frequency: how often the weakness occurs in vulnerabilitics that are exploited by an attacker.

» Ease of Detection: how casy it is for an attacker to find this weakness.
» Remediation Cost: the amount of effort required to fix the weakness.

» Attacker Awareness: the likelihood that an attacker is going to be aware of this particular weakness, methods

for detection, and methods for exploitation.

Associated Mission/Business Risks and Related Attack Patterns

For each common weakness in software, there are associated risks to the mission or business enabled by the software.

Moreover, there are common attack patterns that exploit those weaknesses.

Attack patterns are powerful mechanisms that capture and communicate the attacker’s perspective. They are descriptions
of common methods for exploiting software. They derive from the concept of design patterns apphied in a destructive
rather than constructive context and are generated from in-depth analysis of specific real-world exploit examples. To
assist in enhancing security throughout the software development hifecycle, and to support the needs of developers,
testers and educators, the CWE and Common Attack Pattern Enumeration and Classification (CAPEC) are co-
sponsored by DHS National Cyber Security Division as part of the Software Assurance strategic initiative, and the
efforts are managed by MITRE. The CAPEC website provides a publicly available catalog of attack patterns along with
a comprehensive schema and classification taxonomy. CAPEC will continue to evolve with public participation and
contributions to form a standard mechanism for identifying, collecting, refining, and sharing attack patterns among the

software community.

Sefvware Asswance Pocker Guide Serses.
Developmers, Version 2.2, Tene 26, 2012 (Drf1)

Development teams should use attack patterns to understand the resilience of their software relative to common attacks
and misuse. Table 2 lists the Mission/Business risks associated with each CWE, and 1t lists some of the possible attacks

and misuses associated with the relevant CWEs which enable exploitation of the software.

For a full histing and description of all the attacks related to a particular CWE visit the websites for CWE and CAPEC at

http://ewe.mitre org and http://capec.mitre.org .

CWE-22 : Improper Limitation of &
Pathname to a Restricted Directory ('Path
Traversal’)

»
»
CAPEC-64: Using Slashes and
URL Encoding Combined to Bypass | »
Validation Logic »
CAPEC-76. Manipulating Input to
File System Calls

CAPEC-T8: Using Escaped Slashes
in Alternate Encoding

CAPEC-79: Using Slashes in
Altemate Encoding

CAPEC-139: Relative Path
Traversal

DoS: crash / exit / restart

Execate unauthorized code of
commands

Maodify files or directories
Read files or directories

CWE-T78 : Improper Neutralization of
Special Elements used in an OS G

» CAPEC-15: C d Delimi

CAPEC-6: TCP Header

('OS Command Injection’)

» CAPEC-108: Command Line

¥

CAPEC43: Exploiting Multiple
Input Inweepeetation Layers
CAPEC-88. OS Command Injection

Execution through SQL Injection

¥ ¥ ¥ ¥ ¥

» DoS: crash / exit / restart

Execute unauthorized code or
commands

Hide activities

Medify application data
Medify files or directories
Read application data

Read files or directories

CWE-79 : Improper Neutralization of
[nput During Web Page Generation
('Cross-site Scripting)

CAPEC-18: Embedding Scripts in
Nonseript Elements

CAPEC-19: Embedding Scripts
within Scripts »
CAPEC-32: Embedding Scripts in
HTTP Query Strings

CAPEC-63. Simple Script Injection
CAPEC-R5: Client Network
Footprinting (using AJAX/XSS)
CAPEC-86: Embedding Script
(XSS) in HTTP Headers

CAPEC-91: XSS in IMG Tags
CAPEC-106: Cross Site Scripting
through Log Files

CAPEC-198: Cross-Site Scripting in
Error Pages

CAPEC-199: Cross-Site Scripting
Using Alternate Syntax

CAPEC-200: Cross-Site Scripting
Using MIME Type Mismatch
CAPEC-232: Exploitation of
Privilege/Trust

CAPEC-243. Cross-Site Scripting in
Attributes

CAPEC-244: Cross-Site Scripting
via Encoded URI Schemes

¥

Key Practices for Mingetieg the Most Egregious Expioitadlie Softwace Weaknesses

» Bypass protection mechanism

Execute unauthorized code or
commands
Read application data

» CAPEC-I184: Software Integrity
Attacks

CAPEC-185: Malicious Software
Download

CAPEC-193: PHP Remote File
Inclusion

CAPEC-222: iFrame Overlay
CAPEC-251: Local Code Inclusion
CAPEC-252. PHP Lecal File
Inclusion

CAPEC-253: Remete Code
Inclusion

4. Associated CERT Coding Rules (Table 6) .

Prevention and Mitigation Practices
For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric [Ds) to the actual
filenames or URLs, and reject all other inputs.

For example, [D 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features
such as the ESAPI AccessReferenceMap provide this capability [R.22.3)

if at all possible, use library calls rather than external processes to recreate the desired
functionality.

CWE-78 : Impropes
Neutralization of Special
Elements used in an 08

For any data that will be used to generate a command to be executed, keep as much of
that data out of external control as possible. For example, in web applications, this may
require storing the data locally in the session’s state instead of sending it out to the client
in a hidden form field.

Injection)

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avord CWE-602. Attackers can bypass

CWE-862 : Missing Authorization CAPEC-1: A ing Functionality | » Bypass protection mechanism
Not Properly Constrained by ACLs » Gain privileges / assume identity
CAPEC-17: Accessing, Modifying | » Modify application data
or Executing Executable Files » Modify files or directorics
CAPEC-58. Restful Privilege » Read application data
Elevation e » Read files or directories
CAPEC-122: Exploitation of
Authorization
CAPEC-180: Exploiting Incorvectly
Configured Access Control Security
Levels

CWE-863 : [ncorrect Authorization CAPEC-1: A ing Functionality | » Bypass protection mechanism
Not Properly Coastrained by ACLs » Gain privileges / assume identity
CAPEC-17. Accessing, Modifying | » Medify application data
or Executing Executable Files » Modify files or directories
CAPEC-58. Restful Privilege » Read application data
Elevation . » Read files or directories

» CAPEC-122: Exploitation of
Authorization

» CAPEC-180: Exploiting Incorrectly
Configured Access Control Security
Levels

Key Practices

The key practices documented in “2011 CWE/SANS Top 25 Most Dangerous Programming Errors” focus on preventing
and mitigating dangerous programming errors. Some of the Key Practices specified in the pocket guide are denved from
mitigation recommendations that were common across many of the CWEs in the CWE Top 25, and others came from
approaches described on the CERT Secure Coding Wiki. Additional information on preventing the vanous weaknesses
15 available in the CERT Secure Coding Wiki at hitps://www securecoding cert.org/ and other websites listed under On-
Line Resources of this SwA Pocket Guide. Development teams are also encouraged to use the CAPEC attack patterns to
gain understanding of how their software can be attacked, as well as considering how they can engineer their software
to better handle such attacks. They are also encouraged to use the CAPEC attack patterns to develop tests that can
determine the resilience of their code relative to the common attacks used to exploit software weaknesses. In this SwA
Pocket Guide the key practices are grouped in tables according to Software Development Life Cycle (SDLC) phases:

1. Reguirements, Architecture, and Design (Table 3) ;

2. Build, Compilation, Implementation, Testing, and Documentation (Table 4) ;
3. Installation, Operation and System Configuration (Teble 5) , and

12 Seftware Asswance Pockes Guide Serses
Developmen, Vession 2.2, Iune 26, 2012 (Dreft)

the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Use a vetted hibrary or framework that does not allow this weakness to occur or provides |
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [R.78.8] or a similar tool,

library, or framework. These will help the programmer encode outputs in a manner less
prone to error.

If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide
this capability at every point where output is generated.

Some languages offer multiple functions that can be used to invoke commands. Where
possible, identify any function that invokes a command shell using a single string, and
replace it with a function that requires individual arguments. These functions typically
perform appropriate quoting and filtenng of arguments. For example, in C, the system()
function accepts a string that contains the entire command to be executed, whereas
execl(), execve(), and others reguire an array of strings, one for each argument. In
Windows. CreateProcess() only accepts one command at a time. In Perl, if system() 1s
provided with an array of arguments, then it will quote each of the arguments.

Key Practices for Mingetieg the Most Egregious Exploiadie Software Weaknesses 13

Prevention aud Mlﬁgaﬁon Pncﬂms

For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.862.5] and the OWASP ESAPI Access Control feature [R.862.4).

For web applications, make sure that the access control mechanism is enforced correctly
at the server side on every page. Users should not be able to access any unauthonzed
functionality or information by simply requesting direct access to that page.

One way to do this is to ensure that all pages containing sensitive information are not
cached, and that all such pages restrict access to requests that are accompanied by an
active and authenticated session token assoctated with a user who has the required
permissions to access that page.

Divide your application into anonymous, normal, privileged. and administrative arcas. G803 & Incorrect

Reduce the attack surface by carefully mapping roles with data and functionality. Use
role-based access control (RBAC) [R.863.1] to enforce the roles at the appropnate
boundaries.

Note that this approach may not protect against horizontal authorization, 1.¢., it will not
protect a user from attacking others with the same role.

Ensure that you perform access control checks related to your business logic. These
checks may be different than the access control checks that you apply to more generic
resources such as files, connections, processes, memory, and database records. For
example, a database may restrict access for medical records to a specific database user,
but each record might only be intended to be accessible to the patient and the patient's
doctor.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier o avoid.

For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.863 4] and the OWASP ESAPI Access Control feature [R.863.5].

For web applications, make sure that the access control mechanism is enforced correctly
at the server side on every page. Users should not be able to access any unauthonzed
functionality or information by simply requesting direct access to that page.

One way to do this 15 to ensure that all pages containing sensitive information are not
cached, and that all such pages restrict access to requests that are accompanied by an
active and authenticated session token associated with a user who has the required
permissions to access that page.

| CWE-22 : Improper Limitation
of a Pathname to & Restricted
' Directoey (Path Traversal)

Assume all input is malicious. Use an "accept known good” input validation strategy,
1.¢., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant propertics, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example

of business rule logic, "boat” may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red” or "blue."

22 Seftware Asswance Pockes Guide Serie
Developmen, Vession 2.2, Tune 26, 2012 (Dref1)

Prtnnﬂon nnd Mlﬂgatlou Pncﬂm
Use a feature like Address Space Layout Randomization (ASLR). [R.120.5] (R.1207) EWE-120: Buffer Copy
wlﬂmtcmkmg Size of Input
('cmmo\mw)

Use a CPU and operating system that offers Data Execution Protection (NX) or its
equivalent. [R.120.7] [R.120.9)

Use a feature like Address Space Layout Randomization (ASLR). [R.1313)(R.131.5) EWE3L: Incomect
Calculation of Buffer Size

Use a CPU and operating system that offers Data Execution Protection (NX) or its
eguivalent. [R.131.4)[R.131.5)

Use an application firewall that can detect attacks against this weakness. It can be

beneficial in cases in which the code cannot be fixed (because it is controlled by a o Untrusted Site (Open
third party), as an emergency prevention measure while more comprehensive software

assurance measures are applied, or to provide defense in depth.

For all configuration files, executables, and libraries, make sure that they are only ww
readable and writable by the software's administrator. Penmulonc itical Assignment for

Do not assume that the system administrator will manually change the configuration to
the settings that you recommend in the manual.

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

F1002-C: Canonicalize path names oniginating from untrusted sources e | CWE-22 - Impropes Limitation
of & Pathrame to & Restricted

FI002-CPP: Canonicalize path names onginating from untrusted sources 1 Directory (Path Travessal’)

ENV03-C: Sanitize the environment when invoking external programs JQW_;!':E < Improper 3y
Neutralization of Special

ENV04-C: Do not call system() if you do not need a command processor Elements used in a1 OS
. Command (0S Command

STRO2-C: Sanitize data passed to complex subsystems Injection’y

1DS0O7-J: Do not pass untrusted, unsanitized data to the Runtime.exec() method

STRO2-CPP: Sanitize data passed to complex subsystems

ENV03-CPP: Sanitize the environment when invoking external programs

ENV04-CPP: Do not call system() if you do not need a command processor

No associated CERT coding rules listed for this CWE entry. N%E %
Web Page Generation (Cross-
site Seripting)

No associated CERT coding rules listed for this CWE entry. CWE-89 : Improper
Neutralization of Special
Elements used in an SQL
Command ('SQL Injection’)
Seftware Asswance Pocker Guide Serie

32 Developmen, Version 2 ‘A" , June 2t Dreft)

Prevention and Mitigation Practices.
No associated CERT coding rules listed for this CWE entry. CWE-434 : Uneestricted

SEC06-1: Do not rely on the default automatic signature verification provided by CWE-494: DumhdofCoﬁ

No associated CERT coding rules listed for this CWE entry. M - URL Redirecsion

F1001-C: Be careful using functions that use file names for identfication

INT06-C: Use strtol() or a related function to convert a stnng token o an integer

INT06-CPP: Use strtol() or a related function to convert a stnng token 1o an integer

F1001-CPP: Be careful using functions that use file names for identification

ERROT7-C: Prefer functions that support error checking over equivalent functions that CWE-676: U”dw

1. CWE-131: Incorrect Calculation of Buffer Size
2. CWE-190 : Integer Overflow or Wraparound

MIT-9 Consider adhering to the following rules when allocating and managing an application’s memory:

1. CWE-120 : Buffer Copy without Checking Size of Input (Classic Buffer Overflow’)

Creating Custom Top-N Lists using CWSS and CWRAF

The CWE/SANS Top 25 1s a great starting point, but each organization has its own set of business priorities, threat
environment, and risk tolerance and for those with the an understanding of those 1ssues, a more refined and custom Top
25 for their business and what software 1s doing for their business is possible through the Common Weakness Scoring
System (CWSS) (https://ewe.mitre.org/ewss/) and the Common Weakness Risk Analysis Framework (CWRAF) (https://

cwe.mitre.org/cwrafl). The mechanisms in CWSS and CWRAF minimize this difficulty by letting organizations model

F1003-J: Create files with appropriate access permission m’i !mcmet it their own business impact considerations into a risk-scoring mechanism.
SEC01-J: Do not allow tainted variables in privileged blocks Critical Resource CWSS provides the mechanism for scoring software's weaknesses in a consistent, flexible, open manner while

considering the context and reflecting the weaknesses’ impacts against that context. It aims to provide a consistent
approach for tools and services prionitizing their static- and dynamic-analysis findings while addressing government,
acadermia, and industry stakeholder needs.

CWRATF uses the core scoring mechanisms from CWSS to let software developers and consumers prioritize their
own target list of software weaknesses across their unique portfolio of software applications and projects, focusing on

ENV03-J: Do not grant dangerous combinations of permissions

F1006-CPP: Create files with appropniate access permissions

F1006-C: Create files with appropriate access permissions

: : ; < i is CWE CWE-759 : Use of & One-Way those with the greatest potential to harm their business. To reduce risk, organizations can select appropriate tools and
N sncialed GERT, couiog niles Hsted for i ey Hash without a Salt technigues, focus staff training, and define contracting details to ensure outsourced efforts also address the prioritized
MSC03-1: Never hard code sensitive information CWE-798 - Use of Hard-coded s
m CWRAF and CWSS let users create top-n lists for their particular software and business domains, missions, and
ENV03-CPP: Sanitize the environment when invoking external programs CWE-B0T: Relianceon technology groups. In conjunction with other activities, CWSS and CWRAF help developers and consumers introduce
Untrusted Inputs in a Security more robust and resilient software into their operational environments.
SEC08-J: Do not base security checks on untrusted sources Decision
No associated CERT coding rules listed for this CWE entry. CWE829 - Inclusion of
Functionality from Untrusted 4 X 2 2
Control Sphere Key Discussion Points Between Developers and Consumers, Acquirers, and
No associated CERT coding rules listed for this CWE entry. M Missing Project Management
No associated CERT coding rules listed for this CWE entry. Anﬂlofjtm Improving software assurance requires an honest dialog between consumers, acquirers, project managers, and developers

on an ongoing basis. Here are some discussion points you can bring up to spark a discussion that will hopefully provide
you and them a better understanding of what you and they are doing and need to do to help improve the assurance
around your software.

MIT-10 T Ryn or compile your software using features or extensions that automatically provide a protection by Dedgnlercopmen =
mechanism that mitigates or eliminates buffer overflows. a. Which BSIMM or OpenSAMM activities/practices are followed?
For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms b. Which SDLC activities are used to directly prevent or mitigate vulnerabilitics in the application
that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red software? {e.g. threat modeling, automated code analysis (static or dynamic), etc).
Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice. €. Which security controls have been utilized to mitigate specific problems (¢.g. authentication,
1. CWE-120 : Buffer Copy without Checking Size of Input (Classic Buffer Overflow’) authorization, cryptography)
2. CWE-131: Incorrect Calcalation of Buffer Size d. Which security-relased frameworks are used, such as ESAPI or built-in frameworks?

MIT-LE | Use a feature like Address Space Layout Randomization (ASLR)[R XX A] [R XX B)

34 Seftware Asswance Pockes Guide Serses.

Key Practices for Mingetieg the Most Egregious Exploiadle Softwace Weaknessss 41
Developmen, Version 2.2, Jene 26, 2012 (D)

Which secure coding rules/practices are followed? (¢.g. CERT, MISRA, ISO SC-22, custom). How is
conformance enforced (e.2. automated tools during checkin)?

What differences, if any, exist between the secure development practices for legacy code, versus newly-
developed code?

For cach implemented IETF RFC, how are the concerns in the RFC's "Security” section mitigated?

Which "Top N" vulnerability/attack lists do your development practices actively attempt to address
(CWE Top 25, OWASP Top Ten, custom Top-N list)?

2. Third-Party Softwarc Management

Which third-party libraries are used by the software?

How does the development team keep current with third- party libraries so that it does not use code
with known vulnerabilities?

How are third-party code changes and vulnerabilitics tracked/monitored?

Which third-party libraries were independently examined for vulnerabilities before being included in
the software?

3. Detection and Analysis

i

Which standardized analysis/testing methodologics are used to evaluate the software? (e.g. OWASP
ASVS, OSSTMM)

Has an independent 3rd-party review been performed against the software? Did the review cover code
implementation, design, architecture, or installation settings?

What tools are used for automated code analysis? Static or dynamic? White box or black box?
Which manual analysis technigues were used?

What specifications, data formats, and protocols are used? Were any test case suites or fuzzing tools
used to evaluate the implementation (c.g. PROTOS)?

What is the attack surface of the software (in privileged code and overall)?. What metrics are used? Can
the attack surface be described in terms of CAPEC?

Which parts of the code have been most recently reviewed?
Which parts of the software contain legacy code whose analysis has been skipped?

4. Compiler/Environment

Which compiler settings are used to reduce or eliminate risk for key weaknesses (c.g. /GS switch)?
Were any compiler warnings ignored when compiling the code? If so, which ones and why?

Was the code compiled using safe libraries?

Which OS features are used to reduce or eliminate the risk of important weaknesses (e.g. DEP, ASLR)?

5. Configuration/Instzllation

Is the product installed "secure by defauit™?

Is the product installed so that critical executables, librarics, configuration files, registry keys, etc.
cannot be modified by untrusted parties?

Does the software run with limited privileges? If not, how is privilege separation performed?

How does the documentation cover security-relevant settings for administrators to use to lock down the
software?

Does the software work under FDCC/USGCB configurations, and/or other secure configurations?
How does the software restrict access to network ports?

6. Vulnerability Response

42

Seftware Asswance Por
Development, Vession 2.2, June 26, 2012 (D)

a. Isasecurity response center st up to handle incoming vulnerability reports from external parties?
b. How casy is it for independent rescarchers and non-customers to report vulnerabilities?

€. Are emergency procedures in place to quickly fix issues that are first discovered being exploited in the
wild?

d. Are procedures in place to handle when vulnerabilities are publicly disclosed without notifying the
developer or giving sufficient time to produce a patch)?

¢. Isthere a sufficiently comprehensive set of information sources that are monitored for reported
vulnerabilitics in your own software, in third-party products, and competitor/analogous products?

f. When a new weakness is found by an outside party, how are the software and associated development
practices reviewed and modified to ensure that similar weaknesses are also detected and removed?

7. Vulnerability Disclosure
a. How are consumers of the software notified about new vulnerabilitics found in the code?

b. For vulnerabilitics that are publicly disclosed by other parties without a patch, is there a policy to
provide public commentary before a patch is available?

¢. Which details are disclosed to customers? What is disclosed to the general public?
d. Arc any credits or compensation provided to independent vulnerability rescarchers?

8. What kind of evidence or proof can be offered regarding these claims?

Using Tools and Other Capabilities to Identify the Top 25

Developers and third-party analysts can use CWE-compatible tools that can map to CWE items in the CWE Top 25.
With the advancing maturity and increasing adoption of CWE, most vendors of software analysis tools and services
express their findings of weaknesses in code, design, and architecture using CWE identifiers. This common language for
expressing weaknesses has eliminated much of the ambiguity and confusion surrounding exactly what the tool or service
has found. At the same tume, different vendors take different approaches as to how they look for weaknesses and what
weaknesses they look for. The CWE Coverage Claims Representation (CCR) s a means for software analysis vendors
to convey to their customers exactly which CWE-identified weaknesses they claim to be able to locate in software. The
word claim is emphasized since neither the CCR itself nor the CWE Compatibility Program venfy or otherwise vet these
statements of coverage. The CWE Effectiveness Program will eventually fulfill this role of venfication.

The main goal of the CCR 15 to facilitate the communication of unambiguous statements of the intention of a tool or
service to discover specific, CWE-identified weaknesses in software. These statements of claim are intended to allow
the providers of software analysis tools and services and the consumers of those tools and services to share a single,
unambiguous understanding of the scope of software weakness analysis. CCR wants users of tools and services o be
aware and informed of the coverage of the tools and services they make use of in analyzing their software, and when
specific classes of weaknesses or individual weaknesses are of specific concern, they can make sure their tools and
services are at least trying to find them. Having a mis-match between an organization’s focus and the capabilities of
their tools and services 1s not something to be discovered after using and depending on them, but rather 1s something that
should be addressed in the initial discussions and exploration of bringing those capabilities to bear for the organization.

It 1s anticipated that the CCR will also foster innovation in the technology of software analysis tools and services by
allowing vendors to clearly state their intentions with respect to weakness discovery and understand more clearly when
there 1s a needd for targeting additional weaknesses to address their customer's concerns. Currently, a tool that does a very
deep analysts on a small subset of the entire set of CWE-defined weaknesses may be judged as inadeguate by potential
customers since, by definition, it fails to discover a broad set of weaknesses. However, with the CCR. the tool provider
could supply a CCR document for that tool, clearly setting expectations as to the set of weaknesses that the tool attempts
to discover. Tool consumers could then evaluate tools based on what specific CWE-identified weaknesses those tools
claim to discover and how that coverage fits within their needs, rather than comparing it to the entire set of CWE-defined
weaknesses.

Key Practices for Mingetieg the Most Egregious Expéoiadlie Saftwase Weakeesses 43

Conclusion

The Software Assurance Pocket Guide Series is developed in collaboration with the SwA Forum and Working Groups
and provides summary material in a more consumable format. The senies provides informative material for SwA
initiatives that seek to reduce software vulnerabilities, minimize exploitation, and address ways to improve the routine
development, acquisition and deployment of trustworthy software products. Together, these activities will enable more
secure and reliable software that supports mission requirements across enterprises and the critical infrastructure.

For additional information or contribution to future material and/or enhancements of this pocket guide, please consider
Jjoining any of the SwA Working Groups and/or send comments to Software. Assurance@dhs.gov . SwA Forums are
open to all participants and free of charge. Please visit https://buildsecunityin.us-cert.gov for further information.

No Warranty

This material s furnished on an “as-1s" basis for information only. The authors, contributors, and participants of the
SwA Forum and Working Groups, their employers, the U.S. Government, other participating organizations, all other
entities associated with this information resource, and entities and products mentioned within this pocket guide make
no warranties of any kind, either expressed or implied, as to any matter including, but not limited to, warranty of fitness
for purpose, completeness or merchantability, exclusivity, or results obtained from use of the material. No warranty of
any kind is made with respect to freedom from patent, trademark, or copynight infingement. Reference or use of any
trademarks is not intended 1n any way to infringe on the nights of the trademark holder. No warranty is made that use of
the information in this pocket guide will result in software that 1s secure. Examples are for illustrative purposes and are
not intended to be used as is or without undergoing analysis.

Reprints

Any Software Assurance Pocket Guide may be reproduced and/or redistributed in its original configuration, within
normal distribution channels {including but not limited to on-demand Internet downloads or in various archived/
compressed formats).

Anyone making further distribution of these pocket guides via reprints may indicate on the pocket guide that their
organization made the reprints of the document, but the pocket guide should not be otherwise altered.

These resources have been developed for information purposes and should be available to all with interests in software
security.

For more information, including recommendations for modification of SwA pocket guides, please contact

Software. Assurance@chs gov or visit the Software Assurance Community Resources and Information Clearinghouse:
https://butldsecurityin.us-cert gov/swa to download this document either format (4"x8" or 85"x11").

Software Assurance (SwA) Pocket Guide Series

SwA 1s primanly focused on software security and mitigating risks attributable to software; better enabling resilience in
operations. SwA Pocket Guides are provided; with some yet to be published. All are offered as informative resources;
not comprehensive in coverage. All are intended as resources for *getting started” with various aspects of software
assurance. The planned coverage of topics in the SwA Pocket Guide Series 15 histed:

SwA in Acquisition & Qutsourcing

44 Sefvware Asswance Pocke
Developren, Version 2.2, Jes

1. Contract Language for Integrating Software Security into the Acquisition Life Cycle
1I. Software Supply Chain Risk Management & Due-Diligence

SwA in Development
I. Integrating Security into the Software Development Life Cycle
1. Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses
III. Risk-hased Software Sccurity Testing
IV. Requirements & Analysis for Secure Software
V. Architecture & Design Considerations for Secure Software
VL
VI Security Considerations for Technologies, Methodologies & Languages

—_

Secure Coding & Software Construction

SwA Life Cycle Support
1. SwA in Education, Training & Certification
1. Secure Software Distribution, Deployment, & Operations
Ill. Code Transparency & Software Labels
IV. Assurance Case Management
V. Assurance Process Improvement & Benchmarking

VL. Sccure Software Environment & Assurance Ecosystem
SwA Measurement & Information Needs

1. Making Software Security Measurable

II. Practical Measurement Framework for SwA & InfoSec

1II. SwA Business Case & Return on Investment

SwA Pocket Guides and related documents are freely available for download via the DHS NCSD Software Assurance
Community Resources and [nformation Clearinghouse at htips:/‘buildsecurityin.us-cert gov/swa .

Key Practices for Mingetieg the Most Egregious Expioiusdie Saftware Weaknesses

45

Software Assurance Automation

e Use cases for SWA Automation:

- SWA conditions/evidence for apps In an
app store

- SWA rating systems for determining which
weaknesses are most important

- Review/Discussion of the updated "Key
Practices" Pocket Guide draft
o| Security automation standards in a cyber
campaign and kill chain, as well as
commercial offerings and operations and

development

©2012 MITRE

Leveraging Vignettes in Cyber Security Standardization for Key ICT Applications in various Domains

Business/Mission
Domains

Technology

Web
Applications

Real-Time
Embedded

Systems Domain/

Tech Gp
.

L=

Control
Systems

End-Point
Computing
Devices

Sea—

Qammon Vignette for Technology Group

Database &

Storage Sys Common Vignette for Technology Gr@

Operating
Systems

Identity Mngt
Systems

Common Vignette for Domain

/

Gignetts

for
Domain/

Cloud]@Eﬂ(
Computing /

Common Weakness Risk Assessment Framework uses Vignettes with Archétypes to iaentify top CWEs in respective Domain/Technology Groups

Enterprise
Sys Apps

—
<\

Common Weakness Risk Analysis Framework (CWRAF)
and Common Weakness Scoring System (CWSS)

Organizations that have declared plans to work on CWRAF
Vignettes and Technical Scorecards to help evolve CWRAF to
meet their customer'’s and the community's needs for a
scoring system for software errors.

Trustwave:

EG-Councll
B) OWASP S5AIC

The Open Web Application Security Project

Common Weakness Risk Analysis Framework (CWRAF)
and Common Weakness Scoring System (CWSS)

Organizations that have declared plans to support CWSS in
their future offerings and are working to help evolve CWSS

to meet their customer's and the community's needs for a
scoring system for software errors.

O CENZIC @ GRAMMATECH

Klocwork VERACODE
FORTIFY

5 0 F T W A R E

{) coverity’

CWRAF/CWSS Provides Risk Prioritization
for CWE throughout Software Life Cycle

Enables education and training to provide specific
practices for eliminating software fault patterns;

Enables developers to mitigate top risks attributable to
exploitable software;

Enables testing organizations to use suite of test tools &
methods (with CWE Coverage Claims Representation)
that cover applicable concerns;

Enables users and operation organizations to deploy and
use software that is more resilient and secure;

Enables procurement organizations to specify software
security expectations through acquisition of software,
hosted applications and services.

Common Attack Pattern Enumeration and Classification
(CAPEC)

Dictionary of attack types (mostly software)

* CAPECID

* Name

* Description

* Attack Prerequisites

* Indicators of Attack

* Examples

* Related Weaknesses (CWE’s)
* Mitigations

Plus much, much more

386 patterns, organized
by categories, with views

What types of attacks should | test my system against?

CWSS
Scoring

CWSS Engine
Score CWE
97 CWE-79
95 CWE-78
94 CWE-22 Wd
94 CWE-434
94 CWE-798
Most
93(CWE-120 Important
93 CWE-250 Weaknesses
92(CWE-770
91f CWE-829
91f CWE-190
91f CWE-494
0 CWE134 CWE Related CAPEC ID’s
90(CWE-772
90l CWE-476 CWE-79 CAPEC-232, CAPEC-106, CAPEC-19, ...
90| CWE-131 CWE-78 CAPEC-108, CAPEC-15, CAPEC-43, CAPEC-6, ...

Common Attack Pattern Enumeration and Classification

Your Problem: How can you know that
software you install or build is “secure”?

* Developers are often not trained in security, and thus
let dangerous code slip into software.

* Most system owners likely have less understanding
of these issues.

So, you need tools and techniques to help
you find and eliminate weaknesses that
might get built into your software with
the developer workforce that you have.

Proposed Tools

e Lists of common weaknesses and attacks.

— Tools built to cover these can help you know your staff is considering all
known weaknesses.

— Training developers about these can prevent weaknesses from being built in.

 Tools to check for weaknesses.

— Running these on source code and/or compiled code can help you find
weaknesses to remove.

— Then, you can verify that they were removed.

* Metrics to assign priority to issues found.

— These metrics can help you adjust your level of rigor to the risks and
impact-level of the specific system.

— Decide how much risk (if any) to accept.

Using the Tools

Train developers to avoid the worst problems.
Find security weaknesses in the code

— Manual design/code review
— Automated “static” analysis tools (for source code)

Eliminate those weaknesses
Test software against attacks

— Automated “dynamic” application analysis tools (for executable code)

Repeat as necessary

What software should you focus on?

e Sadly, attackers can attack even “unimportant”
software on a machine or network to get to
more important (but less vulnerable software).

* So, to some adequate extent, you must protect
even your low-impact systems, to protect your
higher impact systems/information.

Lists of common weaknesses and attacks:
Common Weakness Enumeration (CWE)

Source: Academia, private sector, public sector.

Content: Dictionary of over 600 types of common software
weaknesses.

— Some examples: buffer overflow, command/SQL injection,
missing/weak authentication, etc.

— Typical info: code examples, common mitigation examples, links to
related attacks

Typical Use: COTS vendors require SW developers to avoid CWEs as
part of their work. It’s much cheaper not to have to remove issues
later.

Typical Use: There is commercial training for developers on how to
avoid adding weaknesses to their code.

Typical Use: Tool purchasers can use the list to ensure their tools
look for the full range of weaknesses.

Tools to check for weaknesses
Common Weaknesses

Manual design/code review Developers trained to avoid/locate
weaknesses and attacks.

Automated static analysis of code An appropriate automated tool.
Source Code.
An analyst to help interpret results.

Often Combined — based on CWE

DHS Software Assurance (SwA) Program can help your organization
locate training for developers and analysts, as well as potential tools.

Lists of common weaknesses and attacks:
Common Attack Pattern Enumeration and Classification (CAPEC)

* Source: Academia, private sector, public sector

* Content: Dictionary of over 400 attacks

— Some examples: address spoofing, brute-force
encryption/password attacks, man-in-the-middle attacks, etc.

— Typical info: attack methods/examples, common mitigation
strategies, links to related weaknesses

* Typical Use: Dynamic Tool purchasers can use the list to
ensure their tools attack the full range of weaknesses.

* Typical Use: Pen Testers can get guidance on how to attack
known weaknesses to verify that they are not present.

Tools to check for weaknesses
Attack Paths

Manual penetration testing “White-hat” hackers trained to
locate/exploit weaknesses.

Automated dynamic analysis of An appropriate automated tool.
applications (Tools like ?7?) Executable Code.

An analyst to help interpret results.
Automated Web-testing An appropriate automated tool.
(Tools like Web-Inspect......) Access to the website.

An analyst to help interpret results.

Often Combined — based on CAPEC

DHS Software Assurance (SwA) Program can help your organization
locate training for penetration testers and analysts, as well as potential

tools.

Common Weakness Scoring System
(CWSS)

* Source: DHS - MITRE
e Content: Method to score (rank) weaknesses

— Similar to the National Vulnerability Databases
CVSS.

* Typical Use: Rank weaknesses so you can
decide which ones to address first.

DHS Software Assurance (SwA) Program can help your organization o‘&%@\
understand how to use CWSS to rank weaknesses. 5"”

When should | focus on
Weaknesses and Vulnerabilities?

~ J—

Deployed
system

Concept Design Source Object Binaries
code code

Focus on Focus on

weaknesses {SENR) Vunerabilities

Something in code
that can actually
be exploited.

A type of defect
that may be
exploitable.

Keep Weaknesses from
becoming vulnerabilities

Putting it all Together

What weaknesses are most

important? l
@ @ What types of attacks

l exploit those weaknesses?

Does the system contain
any of those weaknesses?

Does my testing cover all of
those weaknesses?

automation can help...

Common Weakness Enumeration (CWE)

Construction — Common Attack Pattern Enumeration and Classification
(CAPEC)

___ CWE Coverage Claims Representation (CCR)

— Common Weakness Enumeration (CWE)
Common Weakness Risk Analysis Framework (CWRAF)
E\/ Common Weakness Scoring System (CWSS)

rification i ificati
Ve catio - Common Attack Pattern Enumeration and Classification

(CAPEC)
CWE Coverage Claims Representation (CCR)

—

— Common Vulnerabilities and Exposures (CVE)

Open Vulnerability Assessment Language (OVAL)

Deployment — Malware Attribute Enumeration and Characterization
(MAEC)

Cyber Obersvables eXpression (CybOX)

—

BUILDING SECURITY IN

Software Assurance (SWA) Pocket Guide Series

SwA in Acquisition & Outsourcing
» Software Assurance in Acquisition and Contract Language
» Software Supply Chain Risk Management and Due-Diligence

Software Supply Chain
SwA in Development Risk Management and
* Integrating Security into the Software Development Life Cycle Due-Diligence
* Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses | e
* Risk-based Software Security Testing cggvgggomg;gg;;mvwme2
* Requirements and Analysis for Secure Software
* Architecture and Design Considerations for Secure Software g 00001 10018‘1)700 7
+ Secure Coding and Software Construction 0%8\00001007770 1
« Security Considerations for Technologies, Methodologies & Languages | TR 070,070,

v 00, 5

SwA Life Cycle Support ‘o
« SWA in Education, Training and Certification § g \
» Secure Software Distribution, Deployment, and Operations : il =crrvens y |
- Code Transparency & Software Labels : ’“SSUR':_'"fCE .
* Assurance Case Management /

» Secure Software Environment and Assurance EcoSystem

SwA Measurement and Information Needs
» Making Software Security Measurable
* Practical Measurement Framework for SwA and InfoSec

» SWA Business Case and Return on Investment

SwA Pocket Guides and SwA-related documents are collaboratively developed with peer review; they are
subject to update and are freely available for download via the DHS Software Assurance Community
Resources and Information Clearinghouse at https://buildsecurityin.us-cert.gov/swa (see SwA Resources)

https://buildsecurityin.us-cert.gov/swa
https://buildsecurityin.us-cert.gov/swa
https://buildsecurityin.us-cert.gov/swa

Value of Aligning Multiple Perspectives

Total Potential
Security Issues
CWEs)

e Null Pointer Dereference
e Threading Issues
e Issues in Dead Code

e Insecure Crypto Functions
L] (]

= Application Logic Issues

*Reduce false positives
eMap Exploited Issues to Code

¢ Environment Configuration Issues
e Issues in integrations of modules

Dynamic ¢ Runtime Privileges Issues

¢ Protocol Parser/Serializer Issues

Analysis e Issues in 3" party components

¢ SQL Injection

e Cross Site Scripting

e HTTP Response Splitting
e OS Commanding

e LDAP Injection

The HS SEDI FFRDC is managed and operated by The MITRE Corporation for DHS.

=\ W=
%’e &
S

LAND S5

5 \af A

Practical Example

lication
Software
Assurance Center
of Excellence
(ASACOE)

The Focal Point for Air
Force Software
Assurance (SwWA)
capability with the goal
of reducing software-
Induced risk from Air
Force applications.

Homeland
7 Security

: USAF ASACOE

Software Development,
Maintenance and Management
Community

I
/\

o5
e
~

=\
%\
w
c
; 3 ‘
A p= N\
. N
Q) /
o
- -
Aquisition Q?w Covernan'cie
Community 5 / ommunity
/
;/‘(

Se ot
B - Cy re 0 el -
~__ "€ Software 0P~ __~

.

Operatlons
Community

1Ne NS dSevl FERULC IS malayeu arnu vperaleu vy 11e il xe Lorpurauurnt r vrnoa.

Overview of Triage Assessment Process

Establish buildable source code and executable test or
operational environment

Run static source code analysis scan
Run web application scan

Run application data security scan
Prioritize results analysis

Eliminate obvious false positives

Correlate results of different tools to confirm
vulnerabilities or eliminate false positives

Conduct remaining analysis
Characterize and classify findings
Create integrated findings report

Adorn integrated report with mitigation advice for
findings

a7 Homeland 102

O\ W)3 : The HS SEDI FFRDC is managed and operated by The MITRE Corporation for DHS.
7 Security

ASACOE Rationale for Multi-perspective
Approach

Air Force is looking to maximize its understanding of
security risk in all areas of its applications (interfaces,
business logic, data tier, etc.)

ASACOE recognizes the difficulty and complexity of
analyzing application security tool scan results

ASACoE wants to provide as much context and guidance as
possible to developers for mitigation and remediation

Ao/ Homeland 103

O\ W)3 : The HS SEDI FFRDC is managed and operated by The MITRE Corporation for DHS.
7 Security

Summary and Conclusions
Software Assurance analysis is increasingly becoming a
high priority and is maturing in its capability

Varying perspectives of analysis are available, each with
their own unique value

Blending multiple perspectives together yields better
overall coverage and an integrated gestalt

It is real and possible to begin pursuing this approach today

;-xnxa Homeland 104

2 =0 The HS SEDI FFRDC is managed and operated by The MITRE Corporation for DHS.
7 Security

Software Assurance

The lewel el epptidsnfiadneb WiivssrivdreaS mee from

vulngsghibkasiriges atAMQHY semgesddato the software or
accidently inserted at anytime during its life cycle and that the

software functions as intended. Derived From: CNSSI-4009

Automation

Languages, enumerations,
registries, tools, and repositories

throughout

. Including design, coding, testing,
the Lifecycle deployment, configuration and
operation

Automation is one piece

of the SwWA puzzle.

BUILDING SECURITY IN

IT/Software Supply Chain Management is E&L1I

ASSURANCE

a National Security & Economic Issue

» Adversaries can gain “intimate access” to target systems, especially in a
global supply chain that offers limited transparency

» Advances in science and technology will always outpace the ability of
government and industry to react with new policies and standards

= National security policies must conform with international laws and agreements while
preserving a nation’s rights and freedoms, and protecting a nation’s self interests and
economic goals;

» Forward-looking policies can adapt to the new world of global supply chains;

= Standards for automation, processes, and products must mature to better address
supply chain risk management, systems/software assurance, and the exchange of
information and indicators for cyber security;

= Assurance Rating Schemes for software products and organizations are needed.

» |T/software suppliers and buyers can take more deliberate actions to
security-enhance their processes, practices and products to mitigate risks

= Government & Industry have significant leadership roles in solving this
» Individuals can influence the way their organizations adopt security practices

RN H 1 d Globalization will not be reversed; this is how we conduct business — To remain
@ Ome. an relevant, standards and capability benchmarking measures must address
e SecurltY “assurance” mechanisms needed to manage IT/Software Supply Chain risks.

%

BUILDING SECURITY IN

Next SwWA Forum at MITRE, McLean, VA — 18-20 Sep 2012

RRRRR

SOFTWARE
ASSURANCE
FORUM

“Building Security In”
https://buildsecurityin.us-cert.gov/swa

Joe Jarzombek, pmP, cssLP
Director for Software Assurance
National Cyber Security Division

T Department of Homeland Security
~m> Homeland Joe.Jarzombek@dhs.gov
@ SECU_I'itY (703) 235-3673

LinkedIn SWA Mega-Community

SOFTWARE ASSURANCE FORUM

Homeland BUILDING SECURITY IN
Security -f —

" National
+DPetense

A
by //;‘
,,-1'.. TATES
¥ -3

Public/Private Collaboration Efforts for
Security Automation and Software
Supply Chain Risk Management

Next SWA Forum meets 18-20 Sep 2012 at MITRE, McLean, \V/

State of the Art Report on Software Security Assurance

* An IATAC/DACS report identifying and describing

the current state of the art in software security
assurance, including trends in:

— Techniques for the production of secure software

— Technologies that exist or are emerging to address the
software security challenge

— Current activities and organizations in government,
industry, and academia, in the U.S. and abroad, that
are devoted to systematic improvement of software
security

— Research trends worldwide that might improve the

state of the art for software security

* Available free via
http://iac.dtic.mil/iatac/download/security.pdf

http://iac.dtic.mil/iatac/download/security.pdf

Enhancing the Development Life Cycle to Produce Secure
Software

 Describes how to integrate security principles
and practices in software development life cycle

» Addresses security requirements, secure design

principles, secure coding, risk-based software Enhancing
. . . the Development Life Cycle
security testing, and secure sustainment = S o

* Provides guidance for selecting secure
development methodologies, practices, and
technologies

* Available free via

https://www.thedacs.com/techs/enhanced life cy
cles/

https://www.thedacs.com/techs/enhanced_life_cycles/
https://www.thedacs.com/techs/enhanced_life_cycles/

Measuring Cyber Security and Information Assurance

* Provides a broad picture of the current state of
cyber security and information assurance (CS/IA),
as well as, a comprehensive look at the progress
made in the CS/IA measurement discipline over
the last nine years since IATAC published its IA
Metrics Critical Review and Technology
Assessment (CR/TA) Report in 2000

* Available free via
 http://iac.dtic.mil/iatac/download/cybersecurity.pdf

http://iac.dtic.mil/iatac/download/cybersecurity.pdf

Software Assurance in Acquisition: Mitigating Risks to the
Enterprise

 Provides information on how to incorporate Software
Assurance considerations in key decisions

— How to exercise due diligence throughout the acquisition process ! ‘*!ﬁ
relative to potential risk exposures that could be introduced by the ¥
S u p p Iy C h ai n Information Resources Management College
— Includes practices that enhance SwA in the purchasing process
.. Software Assurance
* Due diligence questionnaires designed to support risk mitigation in Acquisition:
efforts by eliciting information about the software supply chain (these Mitigating Risks to
are also provided in Word format so they can be customized) the Enterprise

« Sample contract provisions
« Sample language to include in statements of work
* Pre-publication version available free via

https://buildsecurityin.us-
cert.gov/swa/downloads/SwWA in Acquisition 102208.pdf

 Final version published by National Defense University
Press, Feb 2009

https://buildsecurityin.us-cert.gov/swa/acqart.html
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf

Making the Business Case for Software Assurance

 Provides background, context and examples for making the business
case for software assurance:

- M Ot|VatO rS =& Software Engineering Institute

— Cost/Benefit Models Overview

Making the Business Case for
Software Assurance

— Measurement
— Risk o=
— Prioritization

— Process Improvement & Secure Software
— Globalization

— Organizational Development
— Case Studies and Examples

* Available free via
 http://Iwww.sei.cmu.edu/library/abstracts/reports/09sr001.cfm

http://www.sei.cmu.edu/library/abstracts/reports/09sr001.cfm

Software Assurance: A Curriculum Guide to the Common Body
of Knowledge to Produce, Acquire, and Sustain Secure

Software

* Provides a framework intended to identify
workforce needs for competencies, leverage
sound practices, and guide curriculum
development for education and training
relevant to software assurance

* Available free via

https://buildsecurityin.us-cert.gov/bsi/940-
BSl/version/default/part/AttachmentData/data/
CurriculumGuideToTheCBK.pdf

Software Assurance: A Curriculum
Guide to the Common Body of
Knowledge to Produce, Acquire and
Sustain Secure Software

Software Assurance Workforce Education and Training
Working Group

October 2007

@ Homeland
ﬁ) Security

https://buildsecurityin.us-cert.gov/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf

Useful Links

DHS Build Security In Web Site

— A wealth of software and information assurance information, including white papers on static
code analysis tools

— More information on Build Security In can be found at: https://buildsecurityin.us-
cert.gov/daisy/bsi/home.html

Common Weaknesses Enumeration (CWE)

— This site provides a formal list of software weakness types created to Serve as a common
language for describing software security weaknesses in architecture, design, or code

— More information on CWESs can be found at:
* http://cwe.mitre.ora/
CWE/SANS Top 25 Most Dangerous Software Errors

— The 2010 CWE/SANS Top 25 Most Dangerous Software Errors is a list of the most widespread
and critical programming errors that can lead to serious software vulnerabilities.

— More information on the CWE/SANS Top 25 can be found at:
* http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf

NIST SAMATE Static Analysis Tool Survey

— The National Institutes for Science and Technology (NIST), Software Assurance Metrics and
Tool Evaluation (SAMATE) project, provides tables describing current static code analysis tools
for source, byte, and binary code analysis

— More information on SAMATE can be found at: http://samate.nist.qov/

https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://cwe.mitre.org/
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://samate.nist.gov/

Working for Homeland Security

The DHS Office of Cybersecurity and Communications (CS&C) serves
as the national focal point for securing cyber space and the nation’s
cyber assets.

CS&C is actively seeking top notch talent in several areas including:
— Software assurance
— Information technology
— Telecommunications
— Program management
— Public affairs

To learn more about CS&C and potential career opportunities, please
visit USAJOBS at www.usajobs.gov .

@ Homeland

= Security

http://www.usajobs.gov/

