

Informing Data Driven Decisions

James Thompson Director, Major Program Support Office of the Deputy Assistant Secretary of Defense for Systems Engineering

17th PSM Measurement Users' Group Arlington, VA | Feb 25, 2016

PSM User's Group 2/25/2016 | Page-1

Making Decisions

Leadership and Culture

Indicators

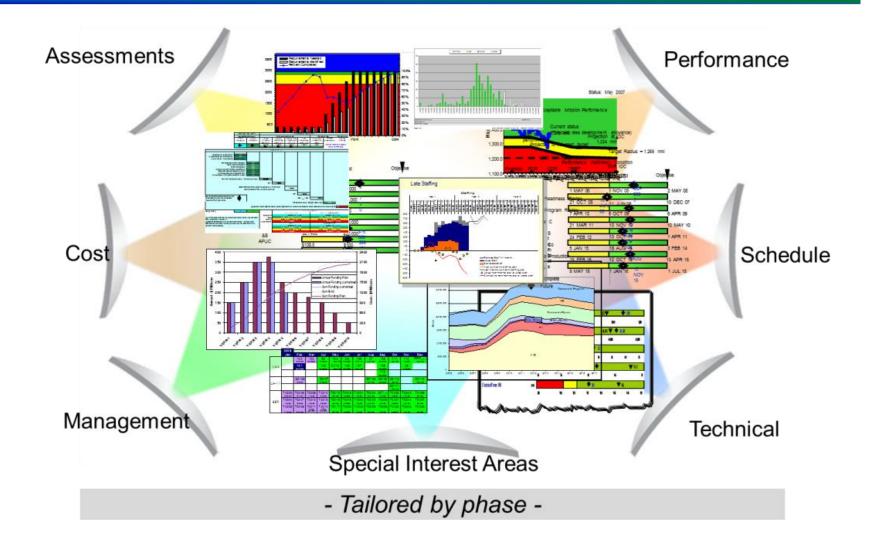
Risks

Systems Engineering *leadership*, and the *expertise* of our <u>people</u> make the difference.

In God we trust....all others, bring data...

W. Edwards Deming

Sign outside office of The Honorable Frank Kendall, Under Secretary of Defense for Acquisition, Technology and Logistics



- Why do we measure?
- When and What do we Measure
- Approach
- Analysis and Insight
- How are we doing?
- Challenges
- Path Forward

Why do We Measure? Program Insights, Knowledge & Inflection Points

PSM User's Group 2/25/2016 | Page-5

000<u>7</u>3

Why Do We Measure Law, Policy, and Guidance

Public Law 111-23, May 22, 2009: Weapon Systems Acquisition Reform Act

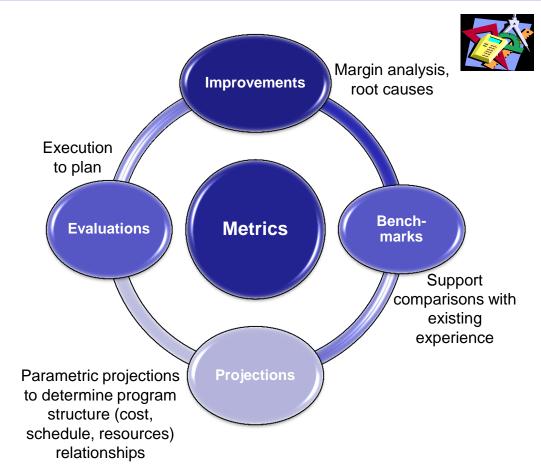
- S.454-10; d.(1): The development and tracking of detailed measurable performance criteria as part of the systems engineering master plans....
- S.454-10; d.(3): A system for storing and tracking information relating to the achievement of the performance criteria and objectives specified...
- S.454-12; SEC. 103.b.(4): Evaluating the utility of performance metrics used to measure the cost, schedule, and performance of [MDAPS], and making such recommendations ...to improve such metrics.

DoDI 5000.02 (January 2015) Enclosure 3 (Systems Engineering)

Para 6, Encl 3: 6. TECHNICAL PERFORMANCE MEASURES AND METRICS. The Program Manager will use technical performance measures and metrics to assess program progress. Analysis of technical performance measures and metrics, in terms of progress against established plans, will provide insight into the technical progress and risk of a program

Systems Engineering Plan Outline, 20 April 2011

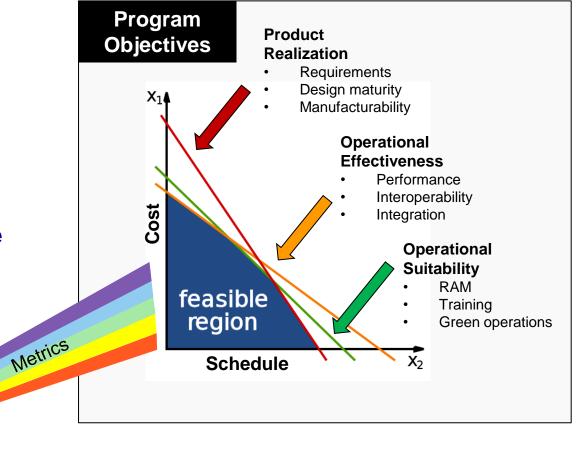
- Directs programs to present their strategy for identifying, prioritizing, and selecting metrics for monitoring and tracking program SE activities and performance
- Section 3.6 "<u>Technical Performance Measures and Metrics</u>"
 - Provides an overview of measurement planning and metrics selection process
 - Include approach to monitor execution-to-plan and identification of roles, responsibilities, and authorities
 - Minimum set of TPMs and intermediate goals and plan to achieve them with dates
 - Examples include TPMs in areas of software, reliability, manufacturing, integration, & test


Performance measures are foundational to PM and DASD(SE) missions.

PSM User's Group 2/25/2016 | Page-6

SE Metrics Goals "What we are trying to achieve"

- Emphasize quantitative understanding <u>consistent with</u> <u>Industry practice</u> of systems engineering
- Make visible relationships between system/equipment design objectives and performance
- Provide foundation for planning, monitor execution
- Inform leaders of technical risks, opportunities, and their impacts at major decisions
- Harness and use existing information for timely and better decisions at the appropriate levels
- Enable data-driven decisions



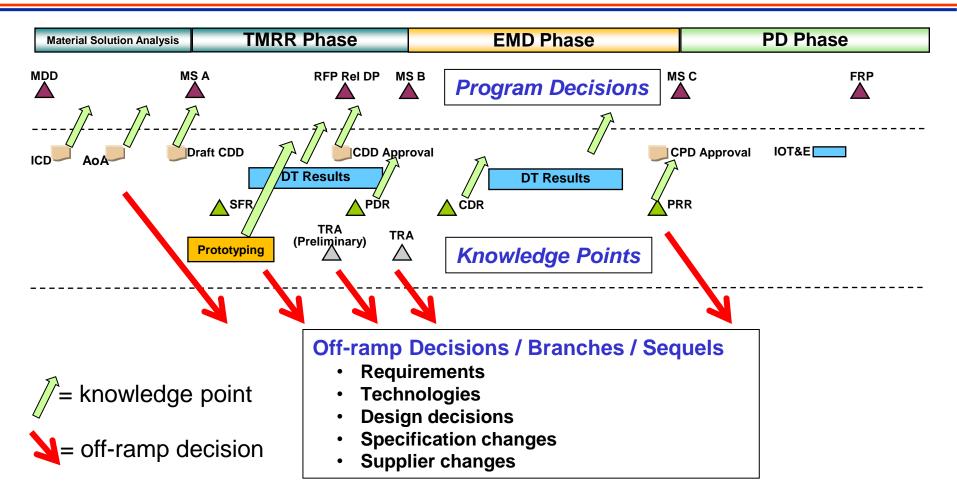
Focus on Program Objectives

Objectives Metrics / Measures **Tailored for program** X_{1} objectives **Combined with relevant** • context Transformed into useful ٠ Cost decision aids to enhance program and Acquisition execution

Systemic Analysis

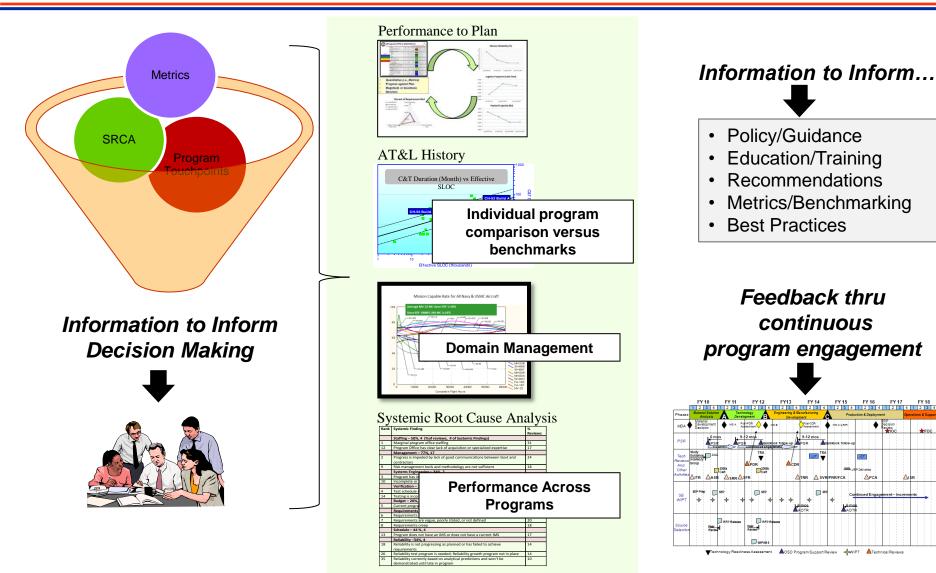
POLCH DOINTS

Bench


marking

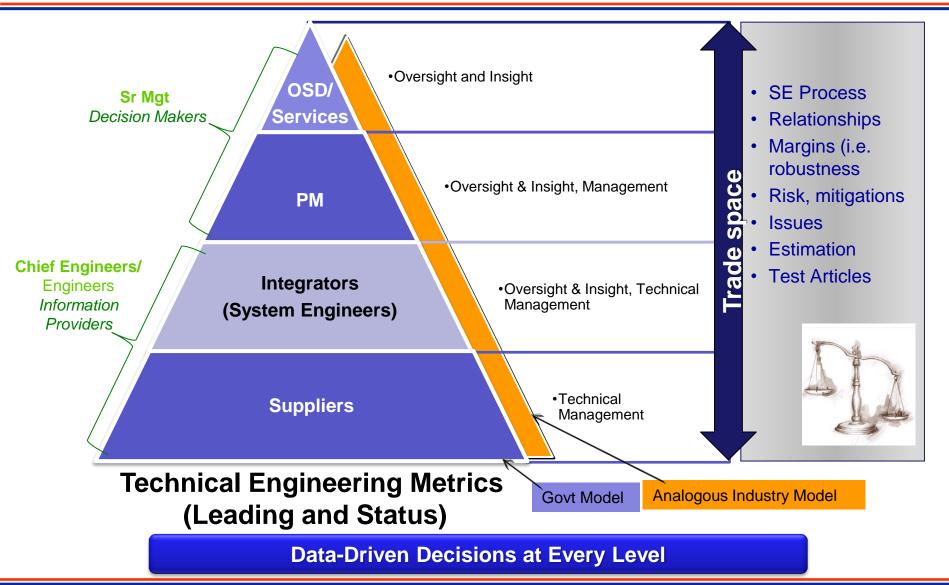
Long Long

Decisions Knowledge Points and Off-Ramps

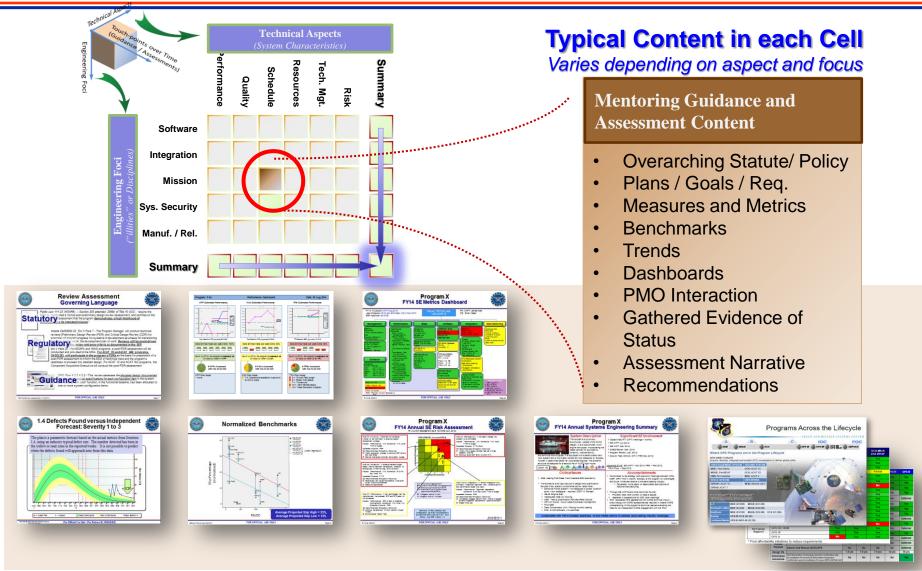

Planning for knowledge and information with which to make off-ramp or branch/sequel decisions based on that knowledge

PSM User's Group 2/25/2016 | Page-9

SE Metrics Approach

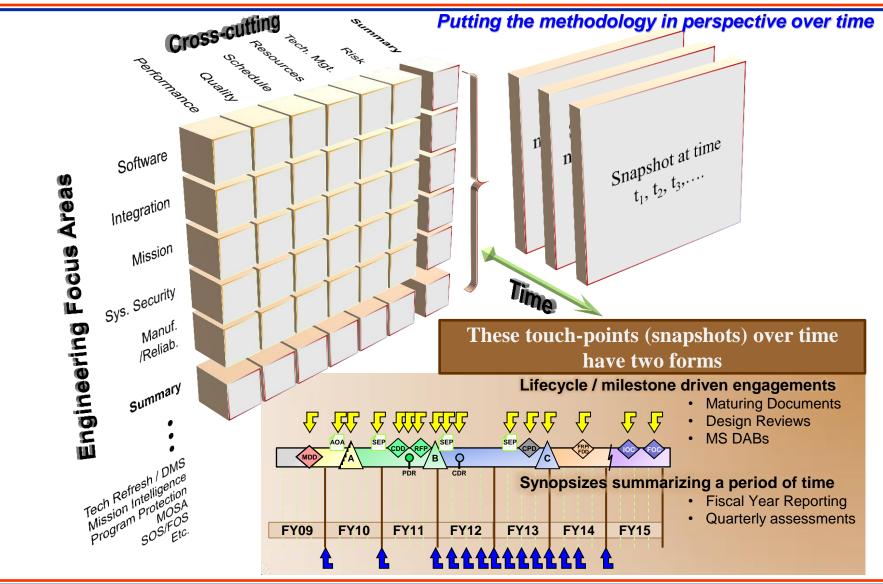


Metrics Framework


PSM User's Group 2/25/2016 | Page-11

Framework for a Single Systems' Engineering Engagement

Matrix of Engineering Specialties and Technical Aspects



PSM User's Group 2/25/2016 | Page-12

Systems' Engineering Touch-points over Time

PSM User's Group 2/25/2016 | Page-13

Flow and Trace of Measures

AoA	CDD/CPD	SEP (D	evelopers)	TEMP (Testers)					
MoEs MoPs	KPPs, KSAs, (Thresh/Obj)	TPMs	Threshold/ Objective	MOEs / MOPs	CTPs (Threshold criteria)				
CCIR time SOA net- ready TST time TST Dissemina- tion	Net-Ready KPP Ref: CDD 6.4	Implemented community of interest Services exposed to external customers Services exposed internally through vertical integration	70%/100% Ability to expose services in support of vertical integration of mission application sub-systems	 1-9: CCIR Time 2-5: PED Visibility 3-10: IERs& KIPS *3-12: SOA Net Ready 3-21: IA Protection Risk 2-2: TST time 	 Normal Operations <15 minutes transmitted to units/assets Visibility of 95% PED nodes status IERs: 100% critical IERs; KIPS: address all GIG Architecture KIPS Identified standard: Risk is low with no additional protection controls needed <3 minutes re-plan initiation to planning completion; order changes transmitted <1 min after plan completion; replanning 25 concurrent missions 				
		Services consumed through horizontal mission threads Services Exposure Verification and tracking sheet	Ability to consume services in support of horizontal integration of mission applications in a net- centric way Number of services exposed to external systems to comply with net-centric service strategy	 2-4: TST Dissemination 2-10: SITREP>FrOB 2-15: Order urgent 2-16: Order normal 3-21: IA protection risk 3-22: IA response risk 3-23: IA detection risk 	 DISR mandated GIG IT standards & profiles identified in the TV-1 DISR mandated GIG KIPS identified in the KIP declaration table NCOW RM Enterprise Services Information assurance requirements including availability, integrity, authentication, confidentiality, non repudiation, and issuance of an order ty the designating authority Operationally effective information exchanges: mission critical performance, information assurance attributes, data correctness, data availability and correctness. 				

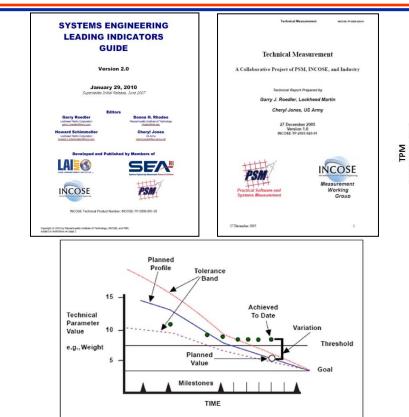
Traceability between AoA, Requirements, SEP, and TEMP

PSM User's Group 2/25/2016 | Page-14

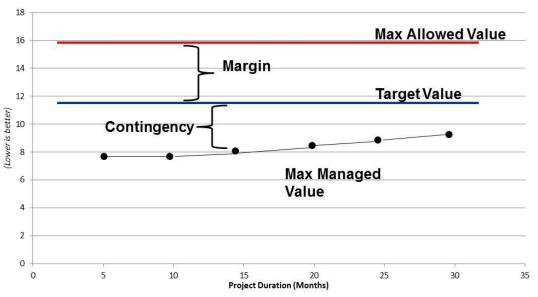
Individual TPMs Evaluated using SMART Criteria

		Assessr	nent Rubri	С	
	Specific	Measurable	Achievable	Relevant	Timely
Definition	Metric or Measure can be interpreted only one way	Metric or Measure can be represented by a number obtained from counting, analysis or instrumentation	Metrics or Measures have defined goals at key acquisition events	Metrics or Measures tied to prgram requirement, KPP/KSA, risk, or key PM process.	Metrics or Measures are collected frequently enough and in time to act on the data. Measure provides early indicator of shortfalls.
Strongly Disagree	Ambiguous TermNo definition provided	Unmeasurable concept	 No desired values identified Multiple interpretations of reported values 	Measure has no tie to program requirements	 Measured only at end of project
Disagree	Overloaded term without definition / equation	 Non-deterministic value, and/or subjective 	No desired values identified	Measure is tangentially related to program requirements	Measured too late to act on the information
Neutral	• Unknown	• Unknown	Desired value defined only at program completion	• Unknown	 Marginally acceptable frequency and latency Measure/Metric is a lagging indicator
Agree	 Measure clearly understood, without disagreement within PMO Equation not provided 	on a pupilshed rulesel te d	Desired value for measure defined for each acquisition milestone	 Beneficial measure, but not related to Requirement, KPP/KSA or PM key process 	 Measured only at acquisition milestones and System Engineering Technical Reviews Provides prompt warning of shortfalls
Strongly Agree	Measure clearly understood outside PMO Equation provided	• Result is deterministic and objective (e.g. given a common set of inputs, the result will be repeated)	Threshold and objective values defined for each acquistion milestone	Measure tied to KPP, requirement or risk Measure is a project management key process	 Measured frequently enough and in time to act on data (e.g. monthly CDRL) Provides early warning of shortfalls

SMART* Criteria used to Evaluate TPMs

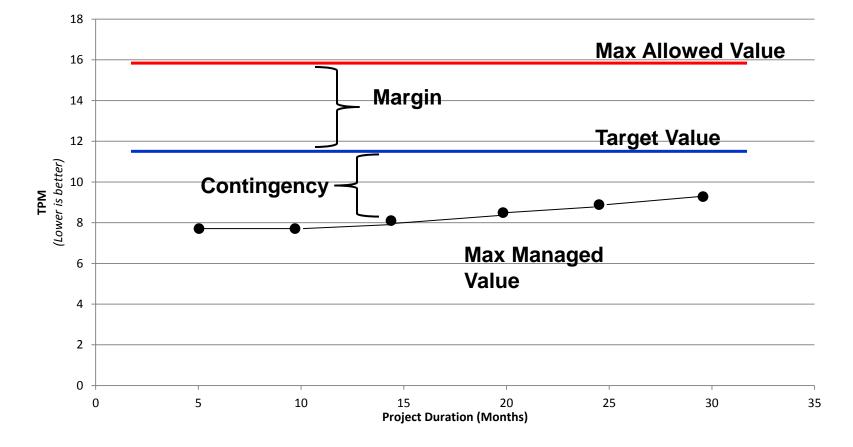

*Commonly attributed to Peter Drucker; first-known use of the term occurs in November 1981 issue of Management Review by George T. Doran

PSM User's Group 2/25/2016 | Page-15


Technical Measures and Attributes

Attributes

- a. Achieved-to-date
- b. Current Estimate
- c. Milestone
- d. Planned Value
- e. Planned Profile
- f. Tolerance Band
- g. Threshold
- h. Variance(s)



Margin – difference between the maximum allowed value and the target value

Contingency – difference between the maximum managed value and the target value, dependent on uncertainty, maturity, variability, and risk.

Margin – difference between the maximum allowed value and the target value Contingency – difference between the maximum managed value and the target value, dependent on uncertainty, maturity, variability, and risk.

What do we measure?

• Two Types of Measurements*

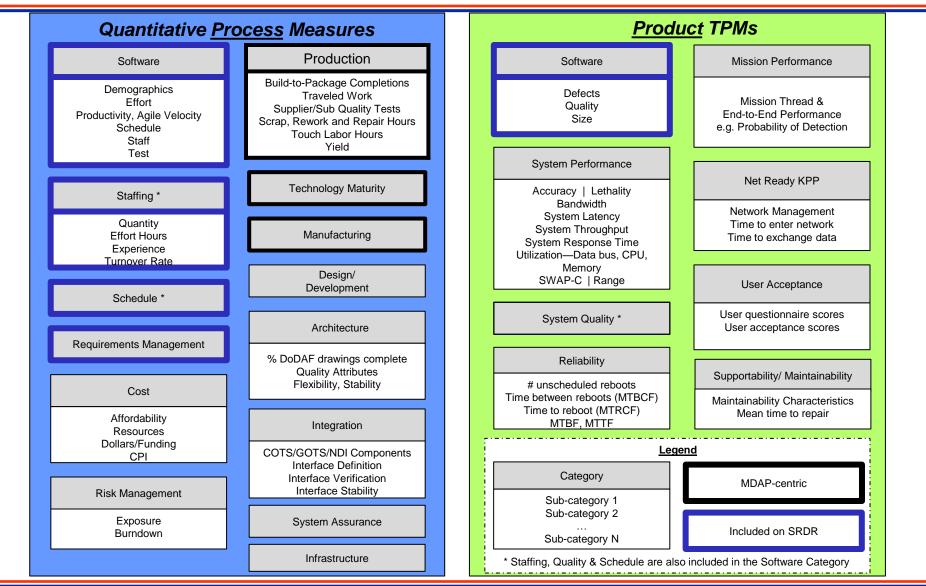
- <u>Process</u>: Quantitative Process Management (QPM)
- <u>Product</u>: Technical Performance Measures (TPM)

Measurements are used to:

- 1. Provide early detection of performance risk & issues
- 2. Track technical maturity forecast values to achieve
- 3. Control system design visibility into actual vs. planned *Source: INCOSE Systems Engineering Primer

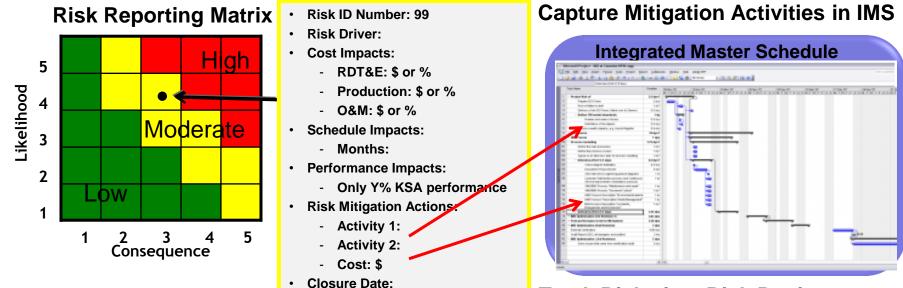
Quantitative Process Management How far have you progressed in developing the product?

(e.g., schedule, requirements)

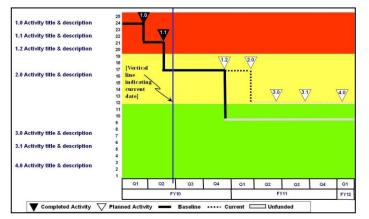

<u>Technical Performance Measures</u> How well does your product do what it is supposed to do?

(e.g., throughput, CPU/memory use)

Tailor Domain- & Lifecycle-Appropriate Performance Measures



PSM User's Group 2/25/2016 | Page-19


Risk Analysis, Tracking, and Mitigation

Track Risks in a Risk Register

Monitor/Measure Risk Burndown

Class		Current Phase	Owner Ovg	Owner		Current Rating	Ten ID	Title	Тури	Submitted Date	rvierity	Owner Breinw	Board Review	Final ECD of Plan	Expected Final Rating	Plan Matus
ligk	le'i	Open	92	Lamothe,	Desvenger, Debble	12/13	538.07.80845	Migsion KPP	Technical	8/1/3007	CDA	7/2/013	6/10/2018	6/50/2814	0/8	On Trad
Rigk	Terl	Open	162	Adrien, Stephen	Boalins, David	L3/04	53K.09.R0022	Plight Test Schedule from Plight to IOC	Schedule	5/31/2909	GTV	7/29/2015	6/11/2918	9/50/2834	12/04	On Tred
Ni ya	le l	Open	м	Cleavenge r, Debaile	Secoulie, Antheny	13/04	534.12.00002	SOTA Schedule Concurrency	Schedule	1/10/2002	SDEX.	7/90/2013	6/11/2918	8/1/2018		On Tree
51 LA	1 e/ 2	Open	38	Hata, Duttee		12/01		Survivability 177	Technical		MD-C	2/0/2023	8/11/2018	12/10/2018		0178
8 I.K		Open	54	Hate, Durne		12/05		Force Protection 899	Technical		MS-C	96203	6/11/2018	12/30/2015		01 716
Risk		Open	92	Dykhoff, Mark	Anatoly	13/64		Excessive Noise Exprove	Technical		Test	78283	6/11/2918		13/04	ûn îre
Nişk	Tier 2	Open	м	Nokodrew. Greg	Clancialia, Joe	14/01	536.12.00029	DIAGAP Certification and Accessification (CEA) of the CHEEK ICP	Schedule	6/4/3052	ionaz Gaevel	2/4/2818	6/11/2803	9/9/2025	17/0	
ki sk	fier2	Open	182	Adrias, Stephan	Amoden, John	13/03	53K 12 R0023	System Maturity at Start of Test	Schedule	3/18/2012	STYLO	1/8/2010	6/11/2018	30/30/2014	12/08	On Tra
2i j k	Tier 2	Open	8	Yurka, Rrigd	frein, Pauline	13/03	53K.15.R0085	Incomplete Sjotem Heserd Analysis Report, CD48, 5505 May Delay 3T	Schedule	3/11/2013	GTV	7/1/2815	1/10/2015	4/50/2815	13/03	
10 4 A	1w/2	Open	38	Turka, Nisti		11/01	NIN 13 F0006	Dollware Safety IDRAP Definition & Analysis May Delay DT	Schedule	8/32/2018	atv	7/1/2018	1/10/2018	1/11/2018	12/28	
il I K	Ser2	üpen -	54	Nowitz, Josef	Mischeil, Leny	12/64	538.13.80815	Achievement of Mean Flight Hour Between Feloe Alerm	Technical	5/30/2813	ar	615/0813	0.10/2813	1/11/2814		
Nişê.	Ter 2e	Open	ANT	Marrer, Mark	Megelhers, Paul	13/64	538.12.00030	Lew Probability Intercept Altonator (UPIR) Anomaties	Schedule	8/35/2003	lional Opeval	6/26/2013	1/30/2018	1/1/2017	13/04	On Tra
Ri LK	Tier 3	Open	54	Lang, Richard	Bar, Seith	12/04		Achieving SDK Weight Empty Requirements	Technical		2	1/15/2013	6/11/2018	8/4/2025	12/04	0179
2 pk		Open	162	Myers, Alen	Stephen	12/04		SAC starting of the ITT at Fax River			Opeval		6/11/2918		15/64	ûn îre
lişk	Ter 3	Open	ANI	Weiland, Overi	Faminy, Charles	12/03	534.08.80038	DIRON Performance Relaw Rots		6/15/2908	CDA	6/26/2015	2/30/203	12/99/2015	0/8	On Tra

Sample Metrics Collected, Normalized, and Modeled

Program Data as Reported

Normalized & Modeled Data

Historical Software Performance Data

- Metrics are captured as reported by the Program (as Program Artifacts)
 - Identify internal inconsistencies within Program metrics
 - Identify data gaps, and omissions
 - Data validation is necessary to conduct analysis

- Metrics are normalized to enable parametric modeling and benchmark analyses
 - Normalization provides ability use parametric models to assess feasibility
 - Software development effort assessed based on probability of success

- Data compiled into historical repository to support benchmark analyses
 - Normalized data allows for benchmarking
 - Unified data set provides ability to assess software performance across portfolios of programs

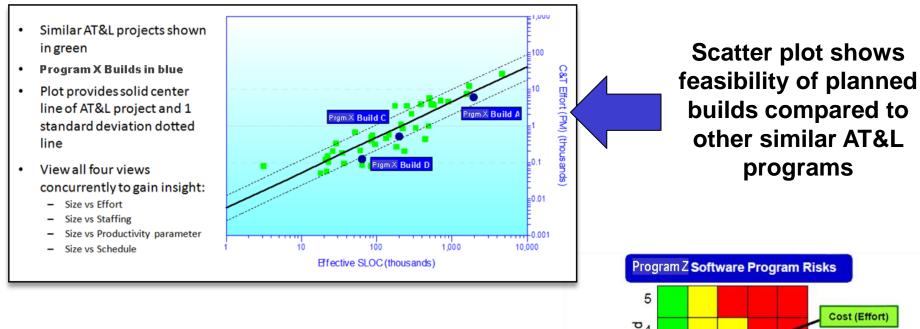
Program Office received trade space analysis

Enabled the program office to select initial planning options in the feasible trade space

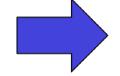
00001	0011	ipuir	501		
Scenario Assumptions	ESLOC	Cost	Schedule	PI	Remarks
Program Plan		\$25M	60 mo		Program allocated \$25M for software; 60 months schedule is not software driven.
1. Optimized Solution	538K	\$76M	86 mo	12.1	Historical industry average; assumes no ESLOC growth; cost overrun 300%; schedule adds 2.1 yrs
2. Fixed Cost	538K	\$25M	114 mo	12.1	Constrained to \$25.2M budget; schedule runs 4.5 yrs late
3. Fixed Schedule	538K	\$370M	60 mo	12.1	Constrained to 5-yr schedule; cost is 14.7 times greater than total budgeted
4. Typical Program Size Growth	700K	\$105M	97 mo	12.3	Size growth (80% industry projects typically grow 30% from PDR to delivery); slightly improved productivity index assumed; cost over 420% of budget; schedule takes 3 yrs longer
5. Reduced Functionality	216K	\$25M	58 mo	12.1	Limited functionality/size with budget and schedule constrained
6. Increased	538K	\$25.2M	60 mo	16.0	Increased PI (2 standard deviations higher than
7. Increased Productivity/ Size	700K	\$39M	62 mo	16.0	Increased PI (only 2.2% of industry has achieved that PI)

Scenario Comparison (80% Assurance)

XXX = Value constrained (held constant) in scenario run

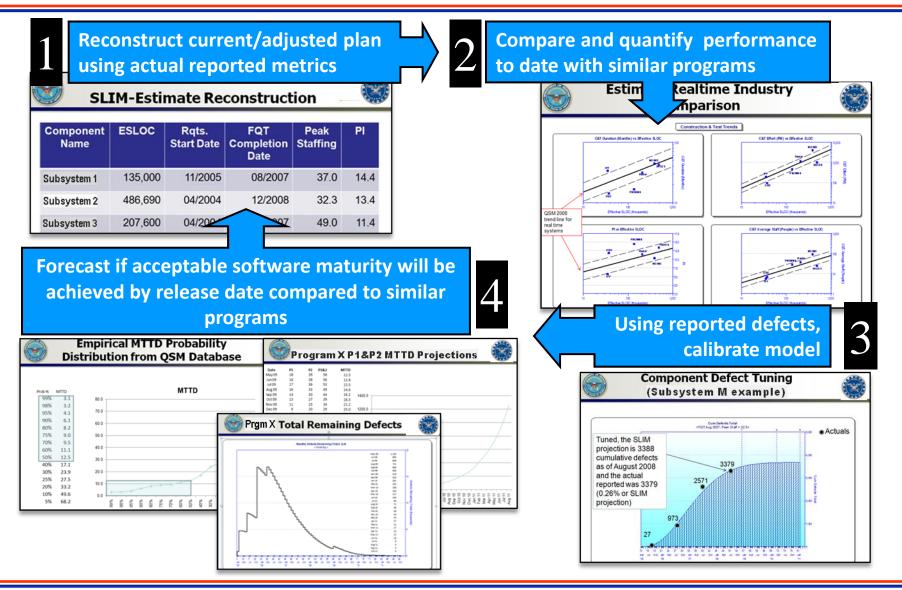

PI = Productivity Index, to include environmental factors for efficiency ESLOC = Effective Logical Source Lines of Code

Interrelationships among size, effort, staffing, duration, and productivity allow decision-makers to see the impact of existing program constraints



Example MS B: Plan Feasibility

Risk areas identified based on statistical distance from historical program performance

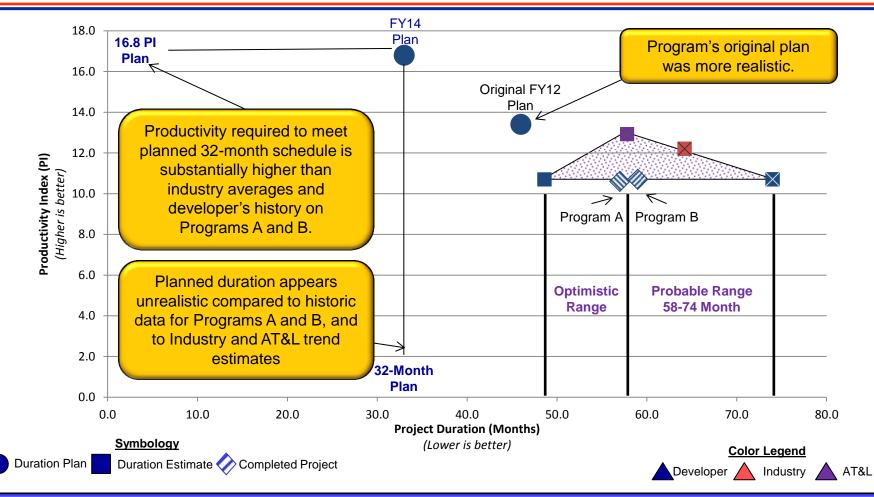


Although consistent with AT&L projects, potential risk due to large size and increased defects, impacting reliability and, to lesser degree, schedule (fixing instead of coding).

Example MS C: Software Maturity Modeling

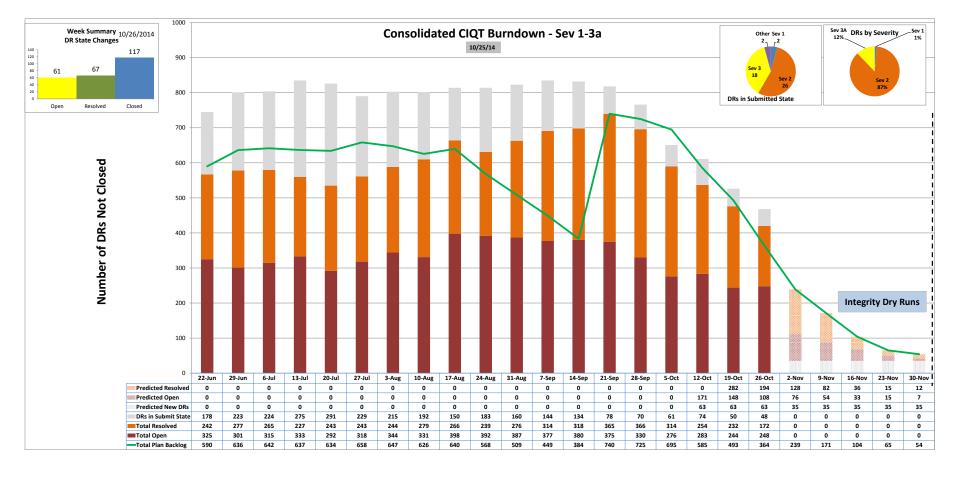
PSM User's Group 2/25/2016 Page-24

How We are Doing Performance Measurement Shortfalls

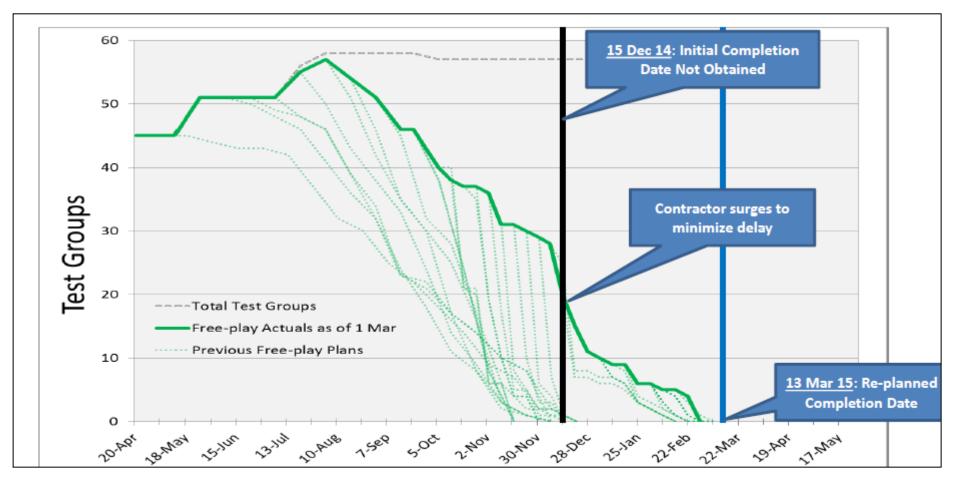


- Systemic issues identified in 2015 report to Congress
 - Lack of sufficient predictive metrics and quantitative management
- Lack of end-to-end performance measurement, developer/tester disconnect and insufficient integration testing
- Sample of other observations
 - Not enough TPMs;
 - No threshold / objective values;
 - Measuring too late; Limited ability to influence program;
 - Too expensive to collect
 - No mission performance metrics;
 - Exclusively focused on "Product" measures;
 - NR KPP unmeasurable
 - Transparency/Warehousing
 - Heisenberg Effect

Estimated Schedule Durations for a Software Development Effort


DASD(SE) uses <u>software benchmarks</u> for industry and from our historical engagements to help inform decisions makers.

PSM User's Group 2/25/2016 | Page-26


Sample Software Deficiency Burndown Optimism

Sample Metrics Testing Optimism

- Agile
- Software Maintenance
- Leading Indicators
- Schedule
- Integration Across Multiple Systems

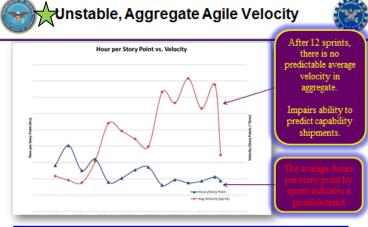
Agile Metrics and Quantitative SW Engineering Vital for Predictable Delivery

Meaning of SP (Done) must be understood

 Are system integration, DT & maturity factors baked in per Agile expectation

Predictability — how well do we estimate?

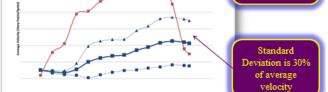
- Sustainable development; can we sustain delivery pace?
- Ignoring "Yesterday's Weather" to plan; ignoring team-level metrics


Scaled metrics continued area of study — Normalization & Aggregation:

- Can safely monitor predictability, acceleration (& percentages) in aggregate
- Can we meaningfully aggregate if the reference story is the same?
- Aggregate velocity can hide Team velocity critical path risk

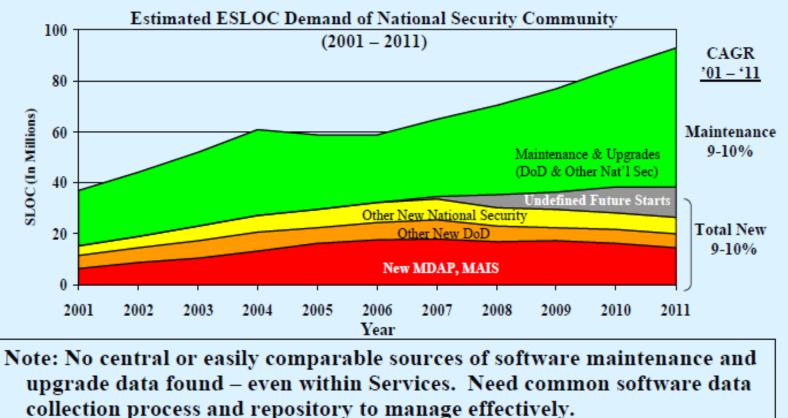
• Daily, Sprint and Release cadence insights


- Sprint metrics optimized for team delivery;
- At scale, measure effectiveness of synchronization and ability to deliver E2E thread


Lack of E2E Value Delivery — [does it] "Do Something" — Metric

Without stability in metrics, these measures are difficult to use for future estimation.

Terribide Converse October 34-36,2015 (Regation Distribution Statement: 3 – Approved for gubic release by DORSR on 10DD/3015, SR Case t 14-3-ttttt applies. Distribution is uninitial.


"There is a difference in how estimations can be done at the iteration, release, and enterprise levels. At the iteration level, the team should always be involved. However, as the projectgets bigger, the need for release- and eventually enterprise-level estimates may look more like those seen in Waterfall."(CMU/SEI-2010-TN-002)

19* NDIOSE Contenente October 26-26, 2015 (Page 46) Distribution Statement: A – Approved for public release by DOPSR on 10DD/2015, SR Case 5 14-9-5555 applies. Distribution is unimited.

Estimated Demand for New and Maintenance Software: Maintenance Effort Growing as Fast as New Development

Source: CARD data, Federal Procurement Database System, QSM, CSIS Analysis

Reference: Center for Strategic and International Studies, Defense-Industrial Initiatives Group, study in support of USD (AT&L)/AS, Oct 2006

Leading Indicators

Material

nte Trande

Considered Based o Determi Participa Require Interfac

Staffing

Technic Techno Archite .

Afforda **Risk M** Manufa PSM Usars Group C

Emer	ging Leading Indi	cators
Information Need	Specific Leading Indicator	Related Source
Requirements	Requirements Stability	SELI 3.1 Requireme

Requirements	Requirements stability	Volatility		
Requirements	Stakeholder Needs Met	SELI 3.4 Validation Trends, SELI 3.5 Verification Trends		
Requirements Affordability	Requirements Tradeoff Impact	SELI 3.16 System Affordability Trends		
Interfaces	Interface Trends	SELI 3.3 Interface Trends		
Architecture	Critical Success Factor and/or QualityAttribute Requirements Satisfied by the Architecture	SELI 3.17 Architecture Trends		
Staffing and Skills Staffing and Skills Trends		SELI 3.11 Staffing and Skills Trends		
Risk Management	Risk Trends	SELI 3.9 Risk Exposure Trends SELI 3.10 Risk Treatment Trends		
Technical Performance Technical Maturity	TPM Summary (all TPMs)	SELI 3.13 Technical Measurement Trends		
Technical Performance Technical Maturity	TPM Trend (specificTPM)	SELI 3.13 Technical Measurement Trends		
Technical Maturity	Technology Readiness Level for each Critical Technology Element	SELI 3.8 Technology Maturity Trends		
PSM Usars Group Conference July 16, 2011	Standard House Manager Advance	ELI: Systems Engineering Leading		

Information Needs Identified

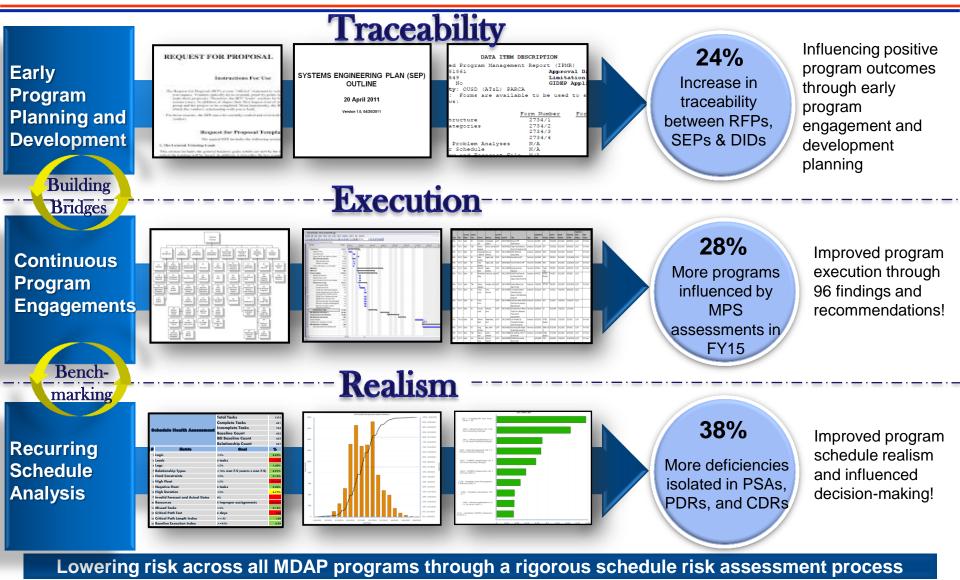
d Most Important on Prioritization ined by Workshop ants	Ranked Lower in Prioritization by Workshop Participants; not considered by breakout teams • Testability
ements < ces	• Requirements Verification and Validation
g and Skills	Defects and Errors
cal Performance	System Assurance
ology Maturity	Process Compliance
ecture	Work Product Progress
ability	Facility and Equipment
lanagement	Change Backlog
acturability	Review Action Item Closure

Example: Requirements Stability

and the state	a report from

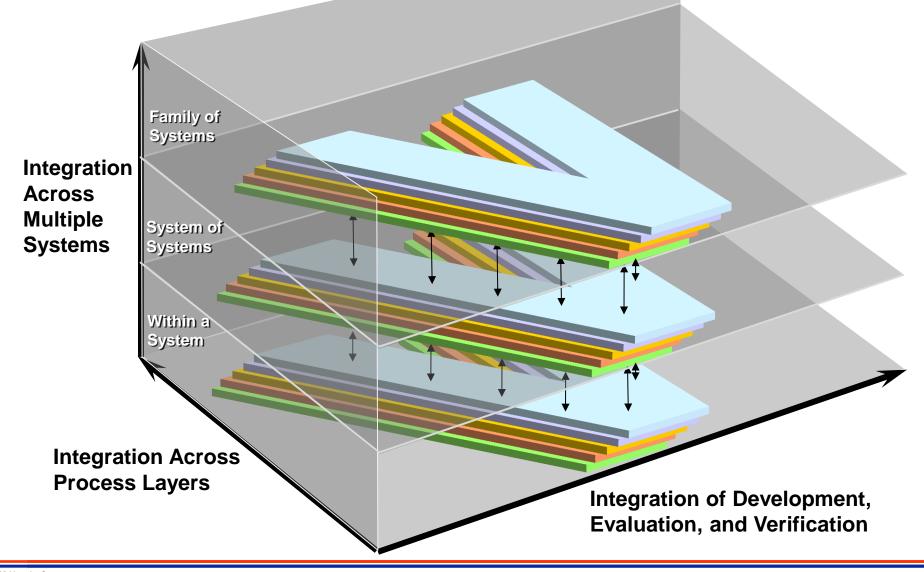
NDIR

Measureable Concept	Is the SE effort driving towards stability in the system definition and size?
Leading Insight Provided	 Indicates whether the system definition is maturing as expected. Indicates risks of change to and quality of architecture, design, implementation, verification, and validation. Indicates schedule and cost risks. May indicate future need for different level or type of resources/skills. Indicates potential lack of understanding of stakeholder requirements that may lead to operational or supportability deficiencies.
Base Measures	Total Requirements at the end of the previous reporting period Requirements Changed during the current reporting period (Added, Modified, Deleted) Major Milestone Schedule Time Profile for Expected Requirements Stability
Derived Measures	Percent Requirements Changed = 100 * total requirement changes/Total Requirements Requirements Stability = 100 - Percent Requirements Changed
Decision Criteria	Investigate need for corrective action if the Stability is 10 percent below the expected level and/or the Stability trend for the last three reporting periods is moving toward the threshold.
July 14, 2011	-19


http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Studies/ NDIA%20System%20Development%20Performance%20Measurement%20Report.pdf

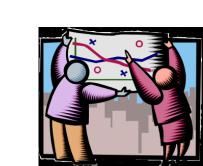
PSM User's Group 2/25/2016 | Page-32

Schedule Risk Analysis FY15



PSM User's Group 2/25/2016 | Page-33

Integration Across Multiple Systems



PSM User's Group 2/25/2016 | Page-34

Challenges for the Future: Making Metrics "Work"

- Providing a common technical language, e.g., between customers and suppliers
- Selecting useful readily available metrics at all acquisition decision levels
- Using metrics to determine risk; role of benchmarking
- Characterize status; Establishing tolerance bands around the selected metric
- Prevent from becoming a numbers game
- Communicate findings and recommendations using simple relevant engineering terms back by supporting engineering detail

Metrics = Focus on Intended Outcomes

Summary

- Actively plan and track performance to plan using TPMs to manage risks throughout the lifecycle
 - Start early, think through the next phase in depth
 - Think through technical challenges and TPMs/metrics to help manage technical risks
 - Use the data to make informed cost and affordability decisions
 - Implement the plan it isn't important if it isn't checked

DASD(SE) is committed to using a <u>quantitative SE approach</u> to:

- Mentor major PMOs and system developers; shape program plans; monitor execution
- Inform DoD leadership of technical risks, opportunities, and impacts to schedule & performance at major decisions
- Track time and cost for System and Software acquisition

Effective use of Measurement Provides Knowledge to inform Decisions

PSM User's Group 2/25/2016 | Page-36

PSM User's Group 2/25/2016 | Page-38

Systems Engineering: Critical to Defense Acquisition

Innovation, Speed, Agility http://www.acq.osd.mil/se

PSM User's Group 2/25/2016 | Page-39