

COSYSMO 3.0: **Updating Cost Estimation of Systems Engineering To Support Affordability**

Jim Alstad*

Dr Barry W Boehm USC Center for Systems and Software Engineering

Dr Jo Ann Lane

Mr Garry Roedler Lockheed Martin

Dr Gan Wang BAE Systems

Ms Marilee Wheaton The Aerospace Corporation

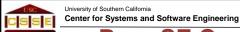
PSM Users' Group Meeting February 25, 2015

Jim Alstad*

310/344-0894

ialstad@usc.edu

02/20


University of Southern California

Center for Systems and Software Engineering

Agenda

Agenda:

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- · System-of-systems estimating: interoperability in COSYSMO 3.0
- Trying the Analytic Hierarchy Process
- Summary

Poor SE Cost Estimation Threatens Affordability

Poor estimates of systems engineering cost can lead to suboptimal systems engineering, resulting in missed engineering opportunities. Here are some example outcomes:

- Rushed or reduced scope of systems engineering, resulting in increased development costs for other engineering disciplines or missed life cycle considerations
- Inadequate time to consider new technologies that could result in major cost reductions
- Technical debt (such as defects and unresolved issues) surfacing during operations & sustainment

Each of these is an affordability problem:

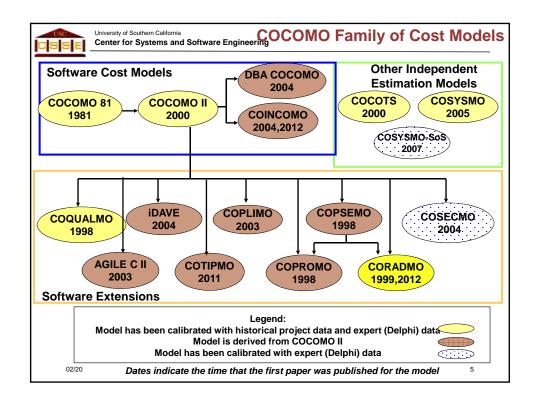
Systems engineering cost is reduced, but total life cycle cost is increased

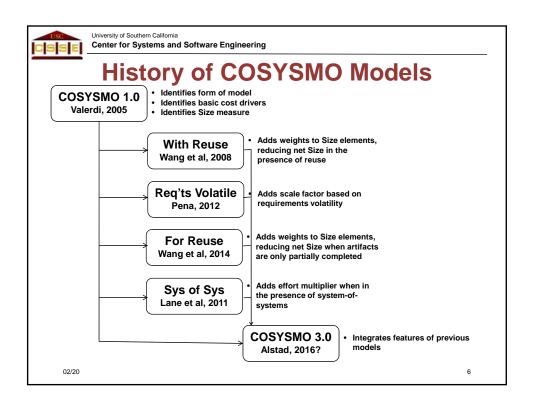
02/20

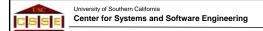
University of Southern California

Center for Systems and Software Engineering

Agenda


Agenda:


Affordability issues can be caused by inaccurate estimates of systems engineering cost



- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Trying the Analytic Hierarchy Process
- Summary

2/20

COSYSMO 3.0 Directions

Incorporate and harmonize existing COSYSMO model research and experience for estimating systems engineering effort:

- Several factors affecting the COSYSMO cost model have been shown to be valuable in increasing estimation accuracy (terminology from [1]):
 - Reuse (partial model—Development With Reuse) [3]
 - Reuse (with Development For Reuse) [1]
 - Requirements volatility (RV) [4]

The rating scales for these could be integrated into a comprehensive COSYSMO model.

Enhancement planned for inclusion:

- System-of-system considerations are hypothesized to affect system engineering costs:
- 02/20— Interoperability considerations [6]

University of Southern California

Center for Systems and Software Engineering

COSYSMO 3.0 Directions Part 2

Enhancements under discussion:

• Explore a model for total development cost based primarily on the COSYSMO parameters [17, 7]

University of Southern California Center for Systems and Software Engineering

Agenda

Agenda:

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO

- Overview of the content of the COSYSMO 3.0 estimating model
- · System-of-systems estimating: interoperability in COSYSMO 3.0
- Trying the Analytic Hierarchy Process
- Summary

02/20

9

University of Southern California

Center for Systems and Software Engineering

COSYSMO 3.0

Top-Level Model
$$PH = A \cdot (AdjSize)^{E} \cdot \prod^{15} EM_{j}$$

Elements of the COSYSMO 3.0 model:

- Calibration parameter A Exponent (E) model
 - Accounts for diseconomy of
- Adjusted Size model
 - eReq submodel, where 4 products contribute to size
- Constant and 3 scale factors
- Reuse submodel
- Effort multipliers EM
 - 15 cost drivers

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0 Size Model

 $AdjSize_{C3} = \sum_{SizeDriver}$

 $eReq(Type(SD), Difficulty(SD)) \times$

 $PartialDevFactor(AL_{Start}(SD), AL_{End}(SD), RType(SD))$

- SizeDriver is one of the system engineering products that determines size in the COSYSMO family (per [2]). Any product of these types is included:
 - System requirement
 - System interface
 - System algorithm
 - Operational scenario
- There are two submodels:
 - Equivalent nominal requirements ("eReq")
 - Raw size
 - Partial development

02/20

· Adjusts size for reuse

11

University of Southern California

Center for Systems and Software Engineering

Size Model – eReq Submodel

- · The eReq submodel is unchanged from [2].
- The submodel computes the size of a SizeDriver, in units of eReq ("equivalent nominal requirements")
- Each SizeDriver is evaluated as being easy, nominal, or difficult.
- The following table contains conversion factors for the conversion of a SizeDriver to a number of eReq:

Size Driver Type	Easy	Nominal	Difficult	
System Requirement	0.5	1.0	4.5	
System Interface	1.9	3.9	9.0	
System Algorithm	2.0	3.9	10.0	
Operational Scenario	6.4	13.8	26.1	

02/20

University of Southern California
Center for Systems and Software Engineering

Size Model -

Partial Development Submodel

- (Concepts here are simplified a little)
- The basic development-with-reuse (DWR) concept:
 - If a reused SizeDriver is being brought in, that saves effort, and so we adjust the size by multiplying the raw size by a PartialDevFactor less than 1.
 - The value of PartialDevFactor is based on the maturity of the reused SizeDriver, and is looked up in a table [24].
 - · How fully developed was the SizeDriver?
 - If there is no reuse for this SizeDriver, then PartialDevFactor = 1 (no adjustment).

DWR % of full-project cost:	100.00%	85.59%	71.18%	58.80%	39.75%	22.52%
DWR Activity Level:	New	Modified	plemented	Integration	Integration	Managed
		Design	Design Im-	Adapted for	Adopted for	

- The basic development-for-reuse (DFR) concept is analogous:
 - A product to be reused may be not be taken through the full development cycle (e.g., an IR&D project)

1	Conceptualized		Designed	Constructed		Validated	
02 DFR Activity Level:	for Reuse	N/A	for Reuse	for Reuse	N/A	for Reuse	13
DFR % of full-project co	st 32.92%		54.91%	81.27%	7	96.79%	

University of Southern California

Center for Systems and Software Engineering

COSYSMO 3.0 Exponent Model

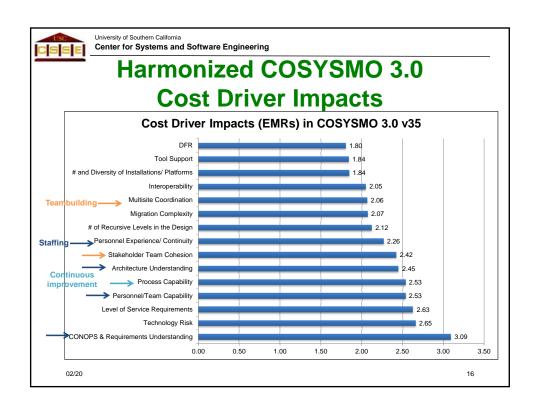
• Exponent model is expanded from Peña [4, 9]

$$E = E_{COSYSMO1}$$

$$+SF_{ROR}+SF_{PC}+SF_{RV}$$

Where:

- $E_{COSYSMO1} = 1.06 [2]$
- SF = scale factor
- ROR = Risk/Opportunity Resolution
- PC = Process Capability
- RV = Requirements Volatility


The effect of a large exponent is more pronounced on bigger projects

02/2

• Here are the 15 cost drivers:

Driver Name	Data Item
CONOPS & requirements understanding	Subjective assessment of the CONOPS & the system requirements
Architecture understanding	Subjective assessment of the system architecture
Stakeholder team cohesion	Subjective assessment of all stakeholders
Level of service requirements	Subjective difficulty of satisfying the key performance parameters
Technology risk	Maturity, readiness, and obsolescence of technology
# of Recursive levels in the design	Number of applicable levels of the Work Breakdown Structure
Development for reuse	Is this project developing artifacts for later reuse?
# and Diversity of installations/platforms	Sites, installations, operating environment, and diverse platforms
Migration complexity	Influence of legacy system (if applicable)
Interoperability	Degree to which this system has to interoperate with others
Personnel/team capability	Subjective assessment of the team's intellectual capability
Process capability	CMMI level or equivalent rating
Personnel experience/continuity	Subjective assessment of staff consistency
Multisite coordination	Location of stakeholders and coordination barriers
Tool support	Subjective assessment of SE tools

Agenda

Agenda:

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model

- System-of-systems estimating: interoperability in COSYSMO 3.0
- Trying the Analytic Hierarchy Process
- Summary

02/20

University of Southern California

Center for Systems and Software Engineering

System-of-Systems and Interoperability

17

- Suppose that SE work is being done on a system that is a constituent system in a system-of-systems. How is that context manifested in the SE project?
 - Answer: As interoperability requirements
 - Interoperability: The ability of a system to work with another system or group of systems.
- COSYSMO 3.0 includes interoperability as an influence on cost

2/20 18

COSYSMO 3.0 Interoperability Model

- Lane & Valerdi [6] propose that interoperability be considered a cost influence in the COSYSMO family
- Propose this influence could be manifested in two ways:
 - Method 1: Add a new cost driver (covered there)
 - Method 2: Adjust the easy/medium/difficult rating scale for system interfaces (part of the Size model)
- The working COSYSMO 3.0 includes both methods; only one would be retained in final COSYSMO 3.0.

19

02/20

University of Southern California
Center for Systems and Software Engineering

Size Model -

Adjustment for Interoperability

Adjustment for interoperability (Method 2):

 [6] proposes (in its Table 3) that the table that defines the easy/medium/hard rating scale for a system interface (from [2]) be adjusted by adding a new row (the last row in this table):

Easy	Medium	Difficult	
Simple messages and protocols	Moderate communication complexity	Complex protocol(s)	
Uncoupled	Loosely coupled	Tightly coupled	
Strong consensus among stakeholders	Moderate consensus among stakeholders	Low consensus among stakeholders	
Well behaved	Predictable behavior	Emergent behavior	
Domain or enterprise standards employed	Functional standards employed	Isolated or connected systems with few or no standards	

02/20

Agenda

Agenda:

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Trying the Analytic Hierarchy Process
 - Summary

02/20 21

University of Southern California

Center for Systems and Software Engineering

AHP Trial (1/4)

Background:

- The Analytic Hierarchy Process (AHP) is a mathematical technique for weighting preferences among a group of choices
 - Result is a set of weights that sums to 1.0
- The AHP algorithm determines the preferences based on a set of pairwise importance ratings
 - Each importance rating is on a 9-level scale from Extreme Unimportance to Equal Importance to Extreme Importance
 - Numeric equivalents: 1/9 to 1 to 9
- In a group context, AHP assumes group consensus on the importance ratings

Motivation:

 Some members of the COSYSMO 3.0 Working Group suggested trying AHP to gather expert input on
 COSYSMO cost driver impacts

AHP Trial (2/4)

Motivation (con't):

- To see if results were better than using the traditional COCOMO/COSYSMO technique: Direct expert input on EMRs, via a series of Wideband Delphi aroup meetings
 - "EMR" = Effort Multiplier ratio = ratio of maximum cost driver value to minimum

Approach:

- Develop spreadsheet questionnaire comparing cost driver impacts
 - Derived from work of Kevin Woodward of Lockheed Martin
- Compare within cost driver groups, and between groups
 - Reduces number of comparisons from 105 to 26.

02/20 23

University of Southern California

Center for Systems and Software Engineering

AHP Trial (3/4)

Got a (very) small number of responses from Working **Group members**

- Therefore conclusions are (very) tentative Numeric results:
- AHP requires some type of "anchor" value to go from the set of weights to EMR values
 - Got results for both "product of EMRs equal to previous" and "one previous EMR is correct"
- For definiteness, asked separately about maximum values and minimum values
- Results:
 - Maximum, minimum, and EMR values were overall similar to previous
 - One exception: the "one previous EMR is correct" product of maximum values was about 1/3 of the previous product
 - · But product of minimum values was close to previous

Suggests weakness in "one previous EMR is correct" approach

AHP Trial (4/4)

Other results:

- Gave respondents a chance to express opinions about questionnaire
- There were two types of respondents:
 - A. Those with more AHP experience than Delphi + EMR
 - B. Those with more Delphi + EMR experience than AHP
- Some key responses differed by type:
 - Type A found making pairwise comparisons and the AHP ballot overall easier
 - Type B found direct estimation of EMRs and a typical Delphi exercise easier
- Conclusion: perhaps comfort and efficiency with different approaches depends on respondent's background

02/20 25

University of Southern California

Center for Systems and Software Engineering

Agenda

Agenda:

- Affordability issues can be caused by inaccurate estimates of systems engineering cost
- Introduction to COSYSMO
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Trying the Analytic Hierarchy Process

Summary

Summary

- COSYSMO 3.0 will provide independent estimates of the cost of thorough systems engineering required based on the project parameters
 - Thereby avoiding inadequate systems engineering efforts that tend to lead to affordability problems

02/20 27

University of Southern California
Center for Systems and Software Engineering

Bibliography (1/4)

- "A Generalized Systems Engineering Reuse Framework and its Cost Estimating Relationship", Gan Wang, Garry J Roedler, Mauricio Pena, and Ricardo Valerdi, INCOSE 2014.
- "The Constructive Systems Engineering Cost Model (COSYSMO)", Ricardo Valerdi (PhD Dissertation), 2005.
- 3. "Estimating Systems Engineering Reuse with the Constructive Systems Engineering Cost Model (COSYSMO 2.0)", Jared Fortune (PhD Dissertation), 2009.
- 4. "Quantifying the Impact of Requirements Volatility on Systems Engineering Effort", Mauricio Pena (PhD Dissertation), 2012.
- "Life Cycle Cost Modeling and Risk Assessment for 21st Century Enterprises", Barry Boehm, Jo Ann Lane, Supannika Koolmanojwong, Richard Turner (presentation), April 29, 2014.
- 6. "System Interoperability Influence on System of Systems Engineering Effort", Jo Ann Lane, Ricardo Valerdi, CSER 2011.
- "COSYSMO Extension as a Proxy Systems Cost Estimation" (presentation), Reggie Cole, Garry Roedler, October 23, 2013.

Bibliography (2/4)

- "COSATMO: Developing Next-Generation Full-Coverage Cost Models" (presentation), Jim Alstad, USC CSSE Annual Research Review, April 29, 2014.
- 9. "Quantifying the Impact of Requirements Volatility on Systems Engineering Effort" (presentation), Mauricio Peña, Ricardo Valerdi, October 18, 2012 (COCOMO Forum).
- 10. "Cost Model Extensions to Support Systems Engineering Cost Estimation for Complex Systems and Systems of Systems", Jo Ann Lane, CSER 2009.
- 11. "Proposed Modification to COSYSMO Estimating Relationship", Gan Wang, Ricardo Valerdi, Barry Boehm, Alex Shernoff, INCOSE 2008.
- 12. "Towards COSYSMO 3.0", revised PowerPoint presentation by Gan Wang (filename is "COSYSMO 3.0 Definition Outline.Rev.pptx"), May 2015.
- 13. "COSATMO: Presenting the Harmonized COSYSMO 3.0 Model" (presentation), Jim Alstad, October 22, 2014 (COCOMO Forum).

02/20

University of Southern California

Center for Systems and Software Engineering

Bibliography (3/4)

- "Towards COSYSMO 3.0", 3rd revision of PowerPoint presentation by Gan Wang (revises [12]) (filename is "COSYSMO 3.0 Definition Outline.Rev3.pptx"), June 2015.
- "C4ISR Architecture Working Group Final Report Levels of Information System Interoperability (LISI)", Department of Defense, Washington DC: OSD(ASD(C3I)) C4ISR AWG, 1998.
- 16. "The Levels of Conceptual Interoperability Model", Tolk, A., and Muguira, J., Proceedings of the 2003 Fall Simulation Interoperability Workshop. Orlando FL, September 2003.
- 17. "Towards a Holistic, Total Engineering Cost Model", Wang, G., Shernoff, A., Turnidge, J., and Valerdi, R., INCOSE Singapore, July 2009.
- "COSYSMO Reuse Extension", Wang, G., Valerdi, R., Ankrum, A., Millar, C., and Roedler, G., INCOSE Utrecht, June 2008.
- "COSATMO: Presenting the Harmonized COSYSMO 3.0 Model" (presentation), Jim Alstad, October 22, 2014 (COCOMO Forum)

2/20 30

Bibliography (4/4)

- "A Survey on Interoperability Measurement." Ford, T., Colombi, J., Graham, S., and Jacques, D., Twelfth International Command and Control Research and Technology Symposium (12th ICCRTS), Newport, RI, June 19-21 2007.
- 21."A Framework For Intelligent Assessment and Resolution of Commercial-Off-The-Shelf Product Incompatibilities", Bhuta, Jesal (PhD Dissertation), 2007.
- 22. "Software Engineering Economics" Boehm, Barry W., Prentice-Hall, Upper Saddle River NJ, 1981.
- 23. "The Incremental Commitment Spiral Model", Boehm, B., Lane, J., Koolmanojwong, S., Turner, R., Addison-Wesley, Upper Saddle River, NJ, 2014.
- 24. "The Generalized Reuse Framework—Strategies and the Decision Process for Planned Reuse", Wang, G., INCOSE SEDC16.
- 25. "Systems and Software Engineering—Life Cycle Management—Part 1: Guide for Life Cycle Management", ISO/IEC TR 24748-1:2010(E).

02/20 31