Extended Case Study of Causal Learning within Architecture Research (preliminary)

Robert Stoddard, SEI Mike Konrad, SEI Rick Kazman, SEI David Danks, CMU

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Carnegie Mellon University Software Engineering Institute

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

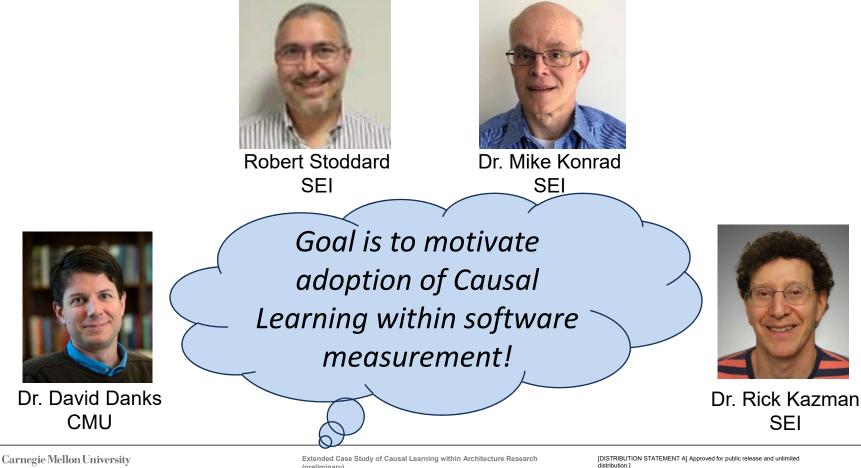
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

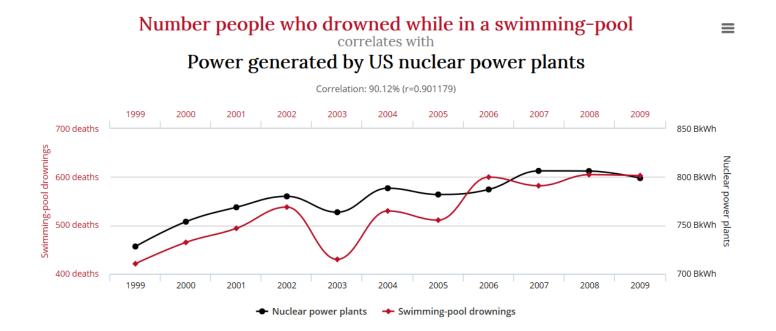
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.


Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

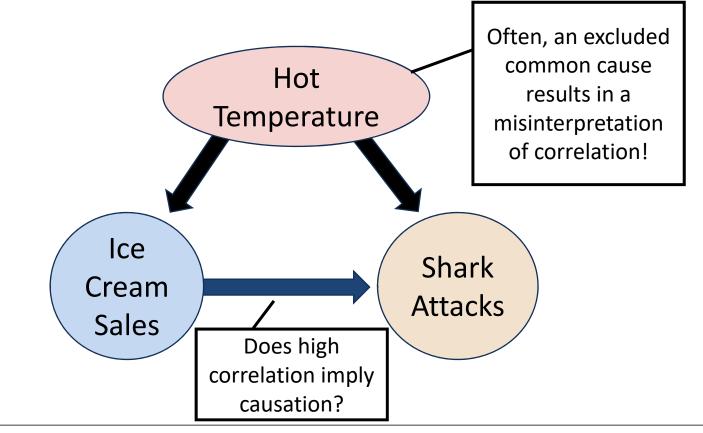
DM18-1046

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University


Goal of the Authors

Software Engineering Institute

(preliminary) © 2018 Carnegie Mellon University


Why Do We Care about Causation?

http://www.tylervigen.com/spurious-correlations

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

More about Misinterpreting Correlation!

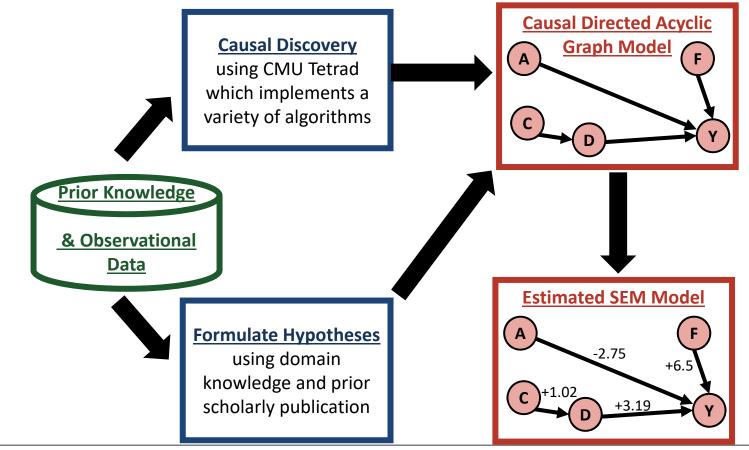
Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Regression Cannot be Trusted without a DAG!

Correlation, hence regression, may be fooled by spurious association!

Before jumping into regression, we need a Directed Acyclic Graph (DAG) representing our context

We then need to determine which paths are causal and which are spurious.


We then must block spurious correlation paths.

Lastly, we then conduct regression with the correct set of factors!

Remember, context of the DAG determines the suitability of the regression model!

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

The Causal Learning Landscape

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Preliminary Architecture Research Causal Findings

Nine open source systems analyzed using static code analysis (> 9000 files)

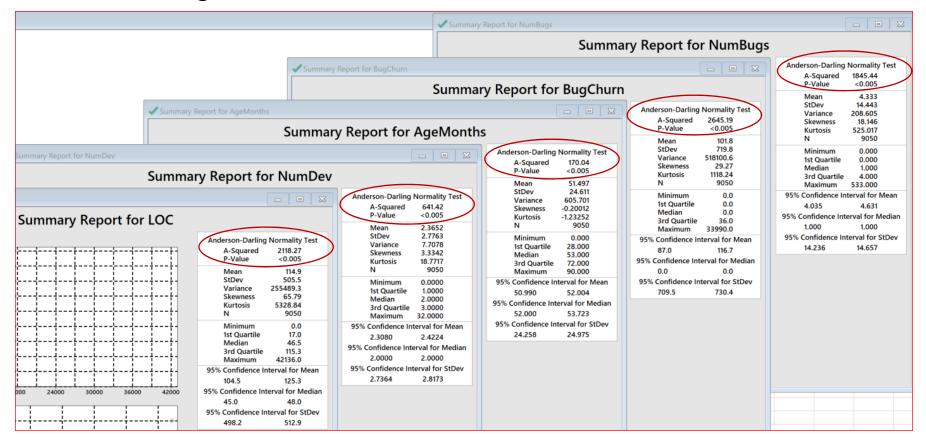
Four architecture pattern violations studied for impact on quality

Each file had the following attributes measured:

- Age in Months
- Number of Developers touching each file
- <u>Size</u> in Lines of Code
- Number of times the file participated in a pattern violation of:
 - the cyclic dependency
 - Improper inheritance
 - Unstable interface
 - Lack of modularity
- Quality outcome of Number of Bugs associated with each file
- Bug churn associated with each file

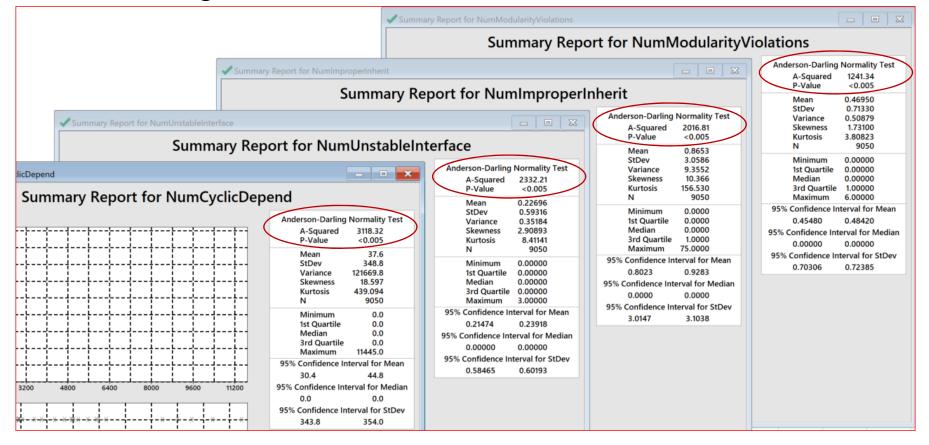
R. Mo, Y. Cai, R. Kazman and L. Xiao, "Hotspot Patterns: The Formal Definition and Automatic Detection of Architecture Smells," 2015 12th Working IEEE/IFIP Conference on Software Architecture, Montreal, QC, 2015, pp. 51-60. doi: 10.1109/WICSA.2015.12

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

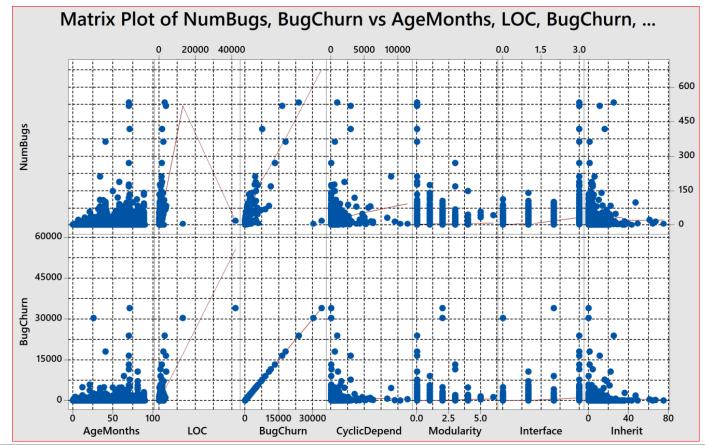

Correlation Matrix of All Factors

	AgeMonths	NumDev	NumCommits	LOC	NumBugs	NumChanges	BugChurn	ChangeChurn	NumCyclicDepend	NumModularityVio	NumUnstableInter
NumDev	0.1790										
	0.0000										
NumCommits	0.0930	0.6890									and
	0.0000	0.0000							umBugs, Nu	mchanges,	and
								NumCommits are highly correlat			elated:
LOC	0.0460	0.2640	0.2720								
	0.0000	0.0000	0.0000					Will keep NumBugs only in the			n the
				0.0000					mod	eling;	
NumBugs	0.1160	0.6540	0.9330	0.2570				-		0.	
	0.0000	0.0000	0.0000	0.0000				Likewis	e, ChangeCl	hurn and LC)C highly
NumChanges	0.0960	0.6880	0.9990	0.2720	0.9340						
Numenanges	0.0000	0.0000	0.0000	0.2720	0.9340			corre	elated, so ke	pt only LUC	, în the
	0.0000	0.0000	0.0000	0.0000	0.000			modeling			
BugChurn	BugChurn 0.0380 0.3920 0.5810 0.7270 0.6390 0.5820		moe								
bugenann	0.0000	0.0000	0.0000	0.0000	0.0000			<u>.</u>			
		0.0000	0.0000			0.0000					
ChangeChurn	0.0180	0.2980	0.4180	0.9400	0.4120	0.4180	0.8300				
2	0.0880	0.0000	0.0000	0.0000	0.0000		0.0000				
NumCyclicDepend	0.0340	0.1520	0.2920	0.1000	0.2430	0.2900	0.1240	0.1080			
	0.0010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
NumModularityVio	0.0490	0.3270	0.2100	0.1070	0.1590	0.2100	0.0980	0.1000	0.0130		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2140		
NumUnstableInter	0.0390	0.5400	0.4820	0.1580	0.3940		0.2220	0.2000	0.1420		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
NumImproperInher	0.1280	0.2060	0.2110	0.1040	0.1850		0.1150	0.0740	0.1620		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.8540	0.000

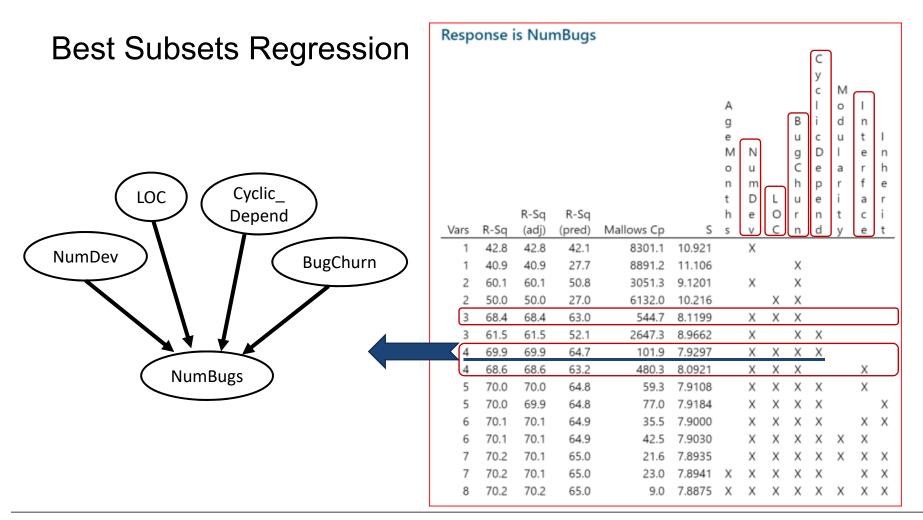
Carnegie Mellon University Software Engineering Institute


Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

All Remaining Factors are Non-Normal - 01

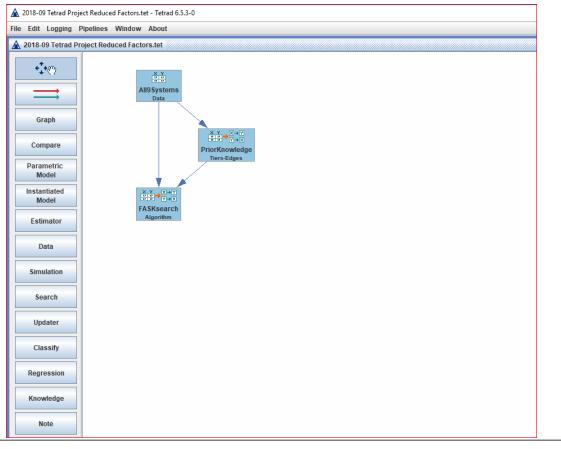

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

All Remaining Factors are Non-Normal - 02


Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

Eyeballing Bivariate Relationships

Carnegie Mellon University Software Engineering Institute


Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

Conduct Causal Search using Tetrad

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

A View of the Data File Loaded into Tetrad

All 9 for Tetrad-v010.csv										
C1 C2		C2	C3	C4	C5	C6	C7	C8	C9	
	AgeMonths	NumDev	LOC	NumBugs	BugChurn	NumCyclic	NumModul	NumUnsta	Numimpro	
1	71.0000	8.0000	491.0000	18.0000	241.0000	8.0000	2.0000	3.0000	1.0000	
2	35.0000	5.0000	270.0000	10.0000	329.0000	167.0000	1.0000	1.0000	4.0000	
3	52.0000	2.0000	58.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
4	42.0000	1.0000	47.0000	2.0000	13.0000	0.0000	0.0000	0.0000	0.0000	
5	49.0000	1.0000	10.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	
6	36.0000	2.0000	103.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
7	54.0000	2.0000	29.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
8	75.0000	8.0000	163.0000	13.0000	134.0000	0.0000	1.0000	3.0000	0.0000	
9	74.0000	2.0000	15.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
10	57.0000	2.0000	26.0000	1.0000	16.0000	22.0000	0.0000	0.0000	0.0000	
11	48.0000	4.0000	81.0000	2.0000	6.0000	0.0000	1.0000	0.0000	0.0000	
12	39.0000	1.0000	30.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
13	49.0000	2.0000	46.0000	3.0000	36.0000	0.0000	0.0000	0.0000	0.0000	
14	46.0000	3.0000	34.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
15	75.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
•	i i									Þ

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Prior Knowledge Entered into Tetrad

PriorKnowledge1 (Tiers and Edges)								
File								
Tiers Other Groups E	dges							
Not in tier:		# Tiers = 3 ÷						
Tier 1		✓ Forbid Within Tier						
AgeMonths LOC	NumDev							
Tier 2		✓ Forbid Within Tier						
NumCyclicDepend NumImproperInherit NumModularityViolations								
NumUnstableInterface								
Tier 3		Forbid Within Tier						
BugChurn NumBugs								
Dagonami Hambago								
Use shift key to select multip	le items.							
	Done							

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

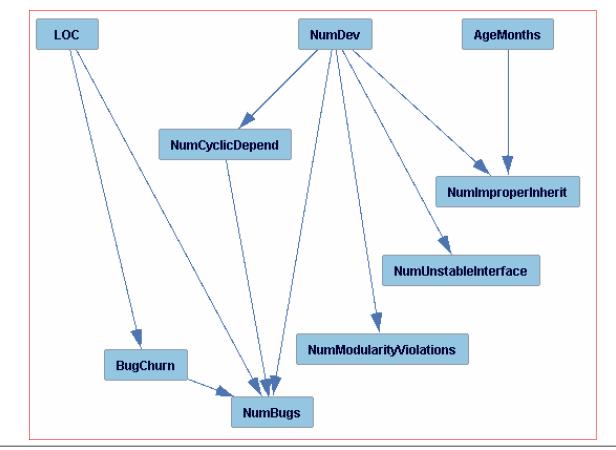
Using FASK Search with Associated Parameters

FASKsearch (Algorithms that Generate Graphs)			ø						
Algorithm Filters	Choose Algorithm	Algorithm Description							
Show algorithms that:	BPC		-						
show all	FAS								
forbid latent common causes	FASK								
	FASK Concatenated								
 allow latent common causes 	FCI								
search for Markov blankets	FGES								
produce undirected graphs	FGE S-MB								
orient pairwise	FOFC FTFC								
search for structure over latents	GFCI								
	GLASSO		=						
Show only:	IMaGES Continuous								
accepts knowledge	IMaGES Discrete								
	LINGAM								
Choose Independence Test and Score	MBFS								
	MGM								
Filter by dataset properties:	MIMBuild								
Variables with linear relationship	PC All								
Gaussian variables	R1								
Gaussian variables	R2 R3								
	RFCI								
Test:	RSkew								
Score: Sem BIC Score	RSkewE								
	Skew		-						
			•						
Set Parameters >									
Set Parameters >									
Done									
			_						

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

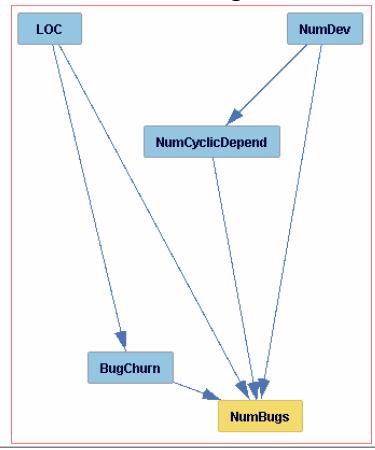
Additional FASK Search Parameter Settings


ASK Parameters		
Penalty discount (min = 0.0)	2	
Maximum size of conditioning set (unlimited = -1)	-1	
Alpha orienting 2-cycles (min = 0.0)	1.0E-6	
Threshold for including extra edges	0.3	
Threshold for judging negative coefficient edges as X->Y (range (-1, 0)	-0.2	=
Yes if adjacencies from the FAS search should be used	🖲 Yes 🔾 No	
Yes if adjacencies from conditional correlation differences should be used	🖲 Yes 🔾 No	
The number of bootstraps (min = 0)	0	
Ensemble method: Preserved (0), Highest (1), Majority (2)	1	
Yes if verbose output should be printed or logged	🔾 Yes 🖲 No	-
< Choose Algorithm Run Search & Generate Graph >		
Done		

Carneg Software Engineering Institute

(preliminary) © 2018 Carnegie Mellon University

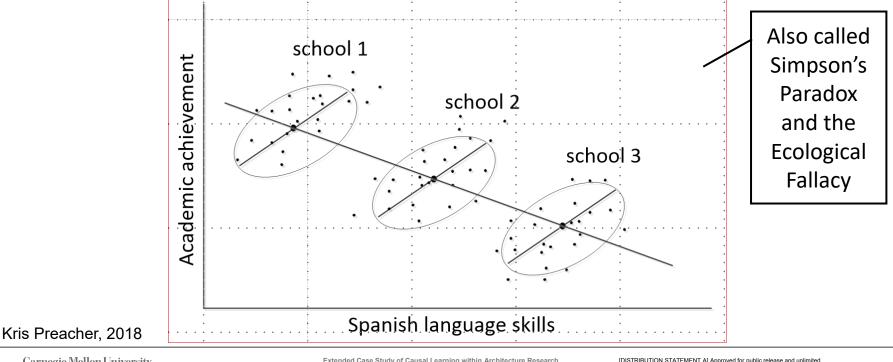
distribution.]


Causal Structure Graph Result

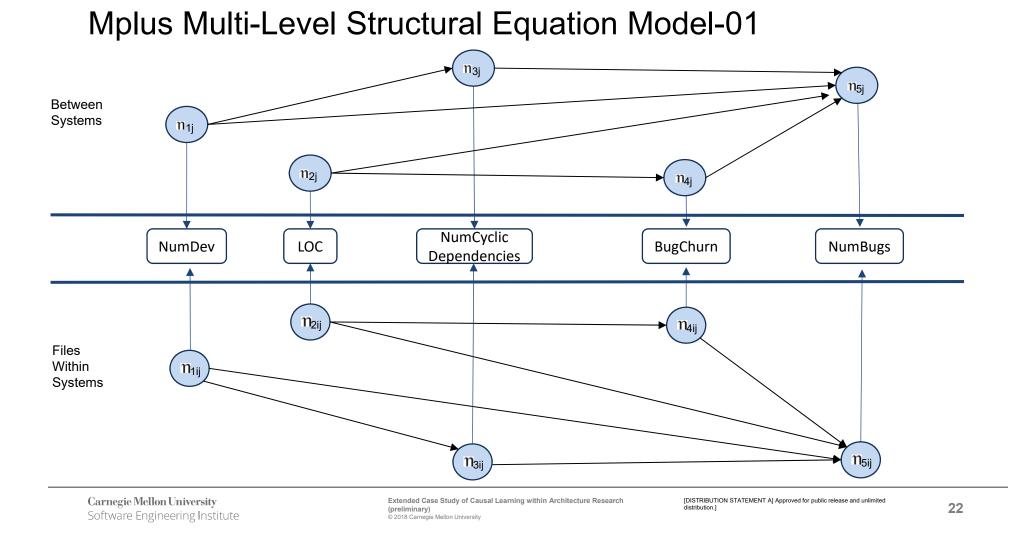
Carnegie Mellon University Software Engineering Institute

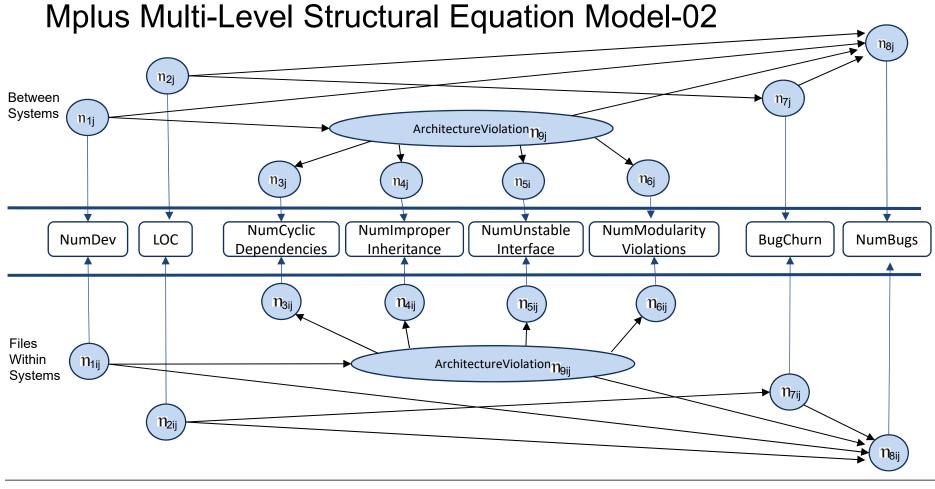
Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Markov Blanket of the NumBugs Factor



Carnegie Mellon University Software Engineering Institute


Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University


Motivation to Look at Multi-Level SEM Models (MSEM)

Within schools, students with better Spanish skills had higher academic achievement. Yet, schools with highest proportion of Spanish speakers performed poorest.

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Carnegie Mellon University Software Engineering Institute

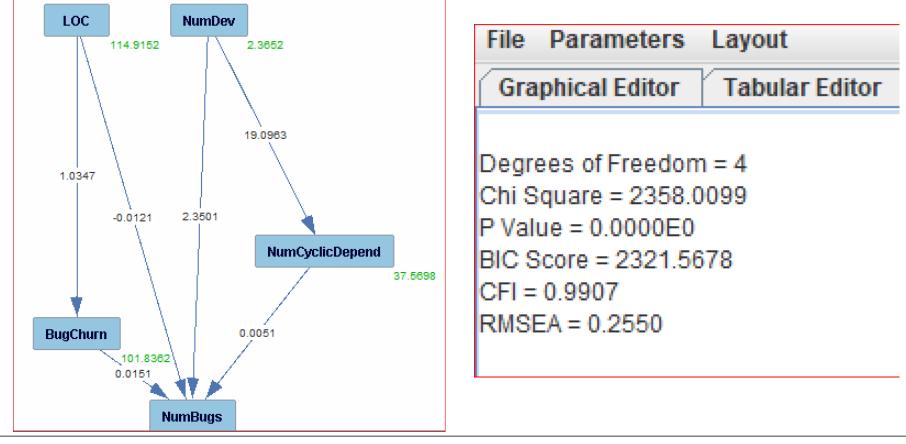
Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.]

Mplus Code

```
TITLE: Basic Model of NumBugs Markov Blanket;
DATA: FILE IS All9forMplus.csv;
VARIABLE: NAMES ARE AgeMos NumDev LOC Cycles Inherit Interfac Modular BugChurn NumBugs
System;
USEVARIABLES ARE NumDev LOC Cycles BugChurn NumBugs System;
CLUSTER IS System;
ANALYSIS: TYPE IS TWOLEVEL;
MODEL:
SBETWEENS
NumBugs ON BugChurn LOC NumDev Cycles;
NumBugs; BugChurn; LOC; NumDev; Cycles;
[NumBugs]; [BugChurn]; [LOC]; [NumDev]; [Cycles];
SWITHINS
NumBugs ON BugChurn LOC NumDev Cycles;
OUTPUT: SAMPSTAT STDYX;
```

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Carnegie Mellon University

24


Mplus MSEM Results

SUMMARY OF DAT	A				
Number of	clusters		9		
Average c	luster size	1005.556			
Estimated	Intraclass Co	orrelations	for the Y Va	riables	
Variable	Intraclass Correlation	Variable	Intraclass Correlation	Variable	Intraclass Correlation
NUMBUGS CYCLES	0.052 0.039	NUMDEV BUGCHURN	0.084 0.026	LOC	0.008

Carnegie Mellon University Software Engineering Institute

Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Traditional SEM Results from Tetrad

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Conclusions

- 1. We attempted MSEM modeling to be sensitive to the "between" and "within" variation components of all the factors
- 2. We also wanted to guard against Simpson's paradox
- 3. The Mplus MSEM analysis, via the Intraclass Correlation measures, showed that in this data situation, we do not need to perform MSEM with two levels
- 4. We then conducted a single level, univariate SEM within Tetrad
- 5. We achieved regression coefficients that take into account the mediation effects occurring on the outcome, NumBugs
- 6. Traditional regression would have been ignorant of the above

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Next Steps

Perform more causal searches

- Additional algorithms
- Sensitivity analysis of algorithm parameters
- Using bootstrapping to get confidence intervals on causal edges

Perform additional multilevel structural equation models:

- Investigate more factors associated with attributes of the open source system
- Evaluate whether a latent factor representing the "voice" of any architecture pattern might be helpful

Publish results:

- Comparison of different models
- Distinguish the causal influence of factors at both the file level and within a system

Convince others in the community to adopt Causal Learning and MSEM

Carnegie Mellon University Software Engineering Institute Extended Case Study of Causal Learning within Architecture Research (preliminary) © 2018 Camegie Mellon University

Questions?

Robert Stoddard, SEI rws@sei.cmu.edu

Mike Konrad, SEI mdk@sei.cmu.edu

Rick Kazman, SEI rkazman@sei.cmu.edu

David Danks, CMU ddanks@cmu.edu

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Carnegie Mellon University Software Engineering Institute